Skip to main content
Log in

Heck arylation of acyclic olefins employing arenediazonium salts and chiral N,N ligands: new mechanistic insights from quantum-chemical calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A quantum-chemical study based on the Kohn–Sham density functional theory (DFT) has been performed in order to investigate the asymmetric Heck–Matsuda (HM) reactions involving a chiral N,N ligand pyrimidine-oxazoline. The oxidative addition (OA) of arenediazonium cation was analyzed to provide further insights in the unexpected high reactivity of N,N-ligated palladium(0)-based catalysts observed in these HM processes. DFT calculations suggest that the ionogenic nature of metal center promoted by the arenediazonium cation addition increases the electronic reactivity of palladium(0) toward the donor N,N ligand. The concerted and multi-step mechanisms were computed for the OA step, in which the cationic aryl-palladium(II) complex formation was revealed as the thermodynamic driving force for this process. The importance of conformational analyses was highlighted, particularly when an acyclic alkenol olefin is taken as substrate, since its absence could lead to misleading predictions about the selectivity of these HM systems. While the enantioselectivity is controlled by the combination of steric and dispersion interactions between ligand and substrate, the regioselectivity is mostly oriented by the electronic nature of olefinic carbons. DFT predictions on the selectivity were shown to be in quantitative agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Heck RF (1982) Palladium-catalyzed vinylation of organic halides. Org React 27:345

    CAS  Google Scholar 

  2. Beletskaya IP, Cheprakov AV (2000) The Heck reaction as a sharpening stone of palladium catalysis. Chem Rev 100:3009

    Article  CAS  PubMed  Google Scholar 

  3. Amatore C, Jutand A (2000) Anionic Pd(0) and Pd(II) intermediates in palladium-catalyzed Heck and cross-coupling reactions. Acc Chem Res 33:314–321

    Article  CAS  PubMed  Google Scholar 

  4. Knowles JP, Whiting A (2007) The Heck-Mizoroki cross-coupling reaction: a mechanistic perspective. Org Biomol Chem 5:31–44

    Article  CAS  PubMed  Google Scholar 

  5. Oestreich M (2009) The Mizoroki–Heck reaction. In: Oestreich M (ed), vol 1, Wiley, Chichester

  6. Mizoroki T, Mori K, Ozaki A (1971) Arylation of olefin with aryl iodide catalyzed by palladium. Bull Chem Soc Jpn 44:581

    Article  CAS  Google Scholar 

  7. Heck RF, Nolley JP (1972) Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J Org Chem 37:2320–2322

    Article  CAS  Google Scholar 

  8. Mori K, Mizoroki T, Ozaki A (1973) Arylation of olefin with iodobenzene catalyzed by palladium. Bull Chem Soc Jpn 46:1505–1508

    Article  CAS  Google Scholar 

  9. Shibasaki M, Boden CDJ, Kojima A (1997) The asymmetric Heck reaction. Tetrahedron 53:7371–7395

    Article  CAS  Google Scholar 

  10. Dounay AB, Oberman LE (2003) The asymmetric intramolecular Heck reaction in natural product total synthesis. Chem Rev 103:2945–2964

    Article  CAS  PubMed  Google Scholar 

  11. Bartók M (2010) Unexpected inversions in asymmetric reactions: reactions with chiral metal complexes, chiral organocatalysts, and heterogeneous chiral catalysts. Chem Rev 110:1663–1705

    Article  PubMed  CAS  Google Scholar 

  12. Roglans A, Pla-Quintana A, Moreno-Mañas M (2006) Diazonium salts as substrates in palladium-catalyzed cross-coupling reactions. Chem Rev 106:4622–4643

    Article  CAS  PubMed  Google Scholar 

  13. Taylor JG, Moro AV, Correia CRD (2011) Evolution and synthetic applications of the Heck-matsuda reaction: the return of arenediazonium salts to prominence. Eur J Org Chem 2011:1403–1428

    Article  CAS  Google Scholar 

  14. Felpin F-X, Nassar-Hardy L, Callonnec FL, Fouquet E (2011) Recent advances in the Heck–Matsuda reaction in heterocyclic chemistry. Tetrahedron 67:2815

    Article  CAS  Google Scholar 

  15. Cartney DM, Guiry PJ (2011) The asymmetric Heck and related reactions. Soc Rev 40:5122–5150

    Article  CAS  Google Scholar 

  16. Correia CRD, Oliveira CC, Salles AG Jr, Santos EA (2012) The first examples of the enantioselective Heck–Matsuda reaction: arylation of unactivated cyclic olefins using chiral bisoxazolines. Tetrahedron Lett 53:3325–3328

    Article  CAS  Google Scholar 

  17. Oliveira CC, Angnes RA, Correia CRD (2013) Intermolecular enantioselective Heck-matsuda arylations of acyclic olefins: application to the synthesis of β-aryl-γ-lactones and β-aryl aldehydes. J Org Chem 78:4373–4385

    Article  CAS  PubMed  Google Scholar 

  18. Silva AR, Polo EC, Martins NC, Correia CRD (2018) Enantioselective oxy-Heck–matsuda arylations: expeditious synthesis of dihydrobenzofuran systems and total synthesis of the neolignan (−)-conocarpan. Adv Synth Cat 360:346–365

    Article  CAS  Google Scholar 

  19. Carmona RC, Köster OD, Correia CRD (2018) Chiral N,N′ ligands enabling palladium-catalyzed enantioselective intramolecular Heck–Matsuda carbonylation reactions by sequential migratory and CO insertions. Angew Chem Int Ed 57:12067–12070

    Article  CAS  Google Scholar 

  20. Reddi Y, Tsai C, Avila CM, Toste FD, Sunoj RB (2019) Harnessing noncovalent interactions in dual catalytic enantioselective Heck–Matsuda arylation. J Am Chem Soc 141:2998

    Article  CAS  Google Scholar 

  21. Kattela S, de Lucca EC, Correia CRD (2018) Enantioselective synthesis of phthalides and isochromanones via Heck–Matsuda arylation of dihydrofurans. Chem Eur J 24:17691–17696

    Article  CAS  PubMed  Google Scholar 

  22. Hu H, Teng F, Liu J, Hu W, Luo S, Zhu Q (2019) Enantioselective synthesis of 2-oxindole spirofused lactones and lactams by Heck/carbonylative cyclization sequences: method development and applications. Angew Chem Int Ed 58:9225–9229

    Article  CAS  Google Scholar 

  23. Werner EW, Mei T-S, Burckle AJ, Sigman MS (2012) Enantioselective Heck arylations of acyclic alkenyl alcohols using a redox-relay strategy. Science 338:1455–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oliveira CC, Pfaltz A, Correia CRD (2015) Quaternary stereogenic centers through enantioselective Heck arylation of acyclic olefins with aryldiazonium salts: application in a concise synthesis of (R)-verapamil. Angew Chem Int Ed 54:14036–14039

    Article  CAS  Google Scholar 

  25. Cabri W, Candiani I (1995) Recent developments and new perspectives in the Heck reaction. Acc Chem Res 28:2–7

    Article  CAS  Google Scholar 

  26. von Schenck H, Kermark B, Svensson M (2003) Electronic control of the regiochemistry in the Heck reaction. J Am Chem Soc 125:3503–3508

    Article  CAS  Google Scholar 

  27. Deeth RJ, Smith A, Brown JM (2004) Electronic control of the regiochemistry in palladium-phosphine catalyzed intermolecular Heck reactions. J Am Chem Soc 126:7144–7151

    Article  CAS  PubMed  Google Scholar 

  28. Felpin F-X, Miqueu K, Sotiropoulos J-M, Fouquet E, Ibarguren O, Laudien J (2010) Temperature, ligand- and base-free Heck reactions of aryl diazonium salts at low palladium loading: sustainable preparation of substituted stilbene derivatives. Chem Eur J 16:5191–5204

    Article  CAS  PubMed  Google Scholar 

  29. Shen J, Xu B, Su M, Zhang W (2018) Branched-selective decarboxylative Heck reaction with electronically unbiased olefins. Eur J Org Chem 2018:2768–2773

    Article  CAS  Google Scholar 

  30. Wang Y, Qu S, Wang Z, Wang X (2014) A computational mechanistic study of an unprecedented Heck-type relay reaction: insight into the origins of regio- and enantioselectivities. J Am Chem Soc 136:986–998

    Article  PubMed  CAS  Google Scholar 

  31. Xu L, Hilton MJ, Zhang X, Norrby P-O, Wu Y-D, Sigman MS, Wiest O (2014) Mechanism, reactivity, and selectivity in palladium-catalyzed redox-relay Heck arylations of alkenyl alcohols. J Am Chem Soc 136:1960–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hilton M, Xu L-P, Norrby P-O, Wu Y-D, Wiest O, Sigman MS (2014) Investigating the nature of palladium chain-walking in the enantioselective redox-relay Heck reaction of alkenyl alcohols. J Org Chem 79:11841–11850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. J Phys Rev 140:A1133

    Article  Google Scholar 

  34. Yu HS, Li SL, Truhlar D (2016) Perspective: Kohn–Sham density functional theory descending a staircase. J. Chem. Phys 145:130901

    Article  PubMed  CAS  Google Scholar 

  35. Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT

  36. Zhao Y, Truhlar D (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  37. Sperge T, Sanhueza IA, Kalvet I, Schoenebeck F (2015) Computational studies of synthetically relevant homogeneous organometallic catalysis involving Ni, Pd, Ir, and Rh: an overview of commonly employed DFT methods and mechanistic insights. Chem Rev 115(17):9532–9586

    Article  CAS  Google Scholar 

  38. Aoto Y, de Lima Batista AP, Köhn A, de Oliveira-Filho AGS (2017) how to arrive at accurate benchmark values for transition metal compounds: Computation or experiment? J Chem Theory Comput 13(11):5291–5316

    Article  CAS  PubMed  Google Scholar 

  39. Begner A, Dolg M, Küchle W, Stoll H, Preu H (1993) Ab initio energy-adjusted pseudopotentials for elements of groups 13–1. Mol Phys 80:1431–1441

    Article  Google Scholar 

  40. Weigend F, Ahrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  41. Hratchian HP, Schlegel HB (2005) Using hessian updating to increase the efficiency of a hessian based predictor-corrector reaction path following method. J Chem Theory Comp 1:61–69

    Article  CAS  Google Scholar 

  42. Marenich AV, Cramer CJ, Truhlar D (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  43. Farshadfar K, Chipman A, Hosseini H, Yates BF, Ariafard A (2019) A modified cationic mechanism for PdCl2-catalyzed transformation of a homoallylic alcohol to an allyl ether. Organometallics 38:152953–152962

    Article  CAS  Google Scholar 

  44. Ansell MB, Menezes da Silva VH, Heerdt G, Braga AAC, Spencer J, Navarro O (2016) An experimental and theoretical study into the facile, homogenous (N-heterocyclic carbene) 2-Pd (0) catalyzed diboration of internal and terminal alkynes. Catal Sci Technol 6:7461–7467

    Article  CAS  Google Scholar 

  45. Reed A, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:6899–6926

    Article  Google Scholar 

  46. Bäcktorp C, Norrby P-O (2010) Trans effects in the Heck reaction—a model study. J Mol Catal A Chem 328:108–113

    Article  CAS  Google Scholar 

  47. Henriksen ST, Norrby P-O, Kaukoranta P, Andersson PG (2008) Combined experimental and theoretical study of the mechanism and enantioselectivity of palladium- catalyzed intermolecular Heck coupling. J Am Chem Soc 130:10414–10421

    Article  CAS  PubMed  Google Scholar 

  48. Menezes da Silva VH, de Lima Batista AP, Navarro O, Braga AAC (2017) Theoretical study on selectivity trends in (N-heterocyclic carbene)-Pd catalyzed mizoroki-Heck reactions: exploring density functionals methods and molecular models. J Comput Chem 38:2371–2377

    Article  CAS  PubMed  Google Scholar 

  49. Oliveira JM, Angnes RA, Khan IU, Polo EC, Heerdt G, Servilha BM, Menezes da Silva VH, Braga AAC, Correia CRD (2018) Enantioselective, noncovalent, substrate-directable Heck-matsuda and oxidative Heck arylations of unactivated five-membered carbocyclic olefins. Chem Eur J 24:11738

    Article  PubMed  CAS  Google Scholar 

  50. Weaver MN, Janicki SZ, Petillo PA (2001) Ab initio calculation of inner-sphere reorganization energies of arenediazonium ion couples. J Org Chem 66:1138–1145

    Article  CAS  PubMed  Google Scholar 

  51. Bonney KJ, Schoenebeck F (2014) Experiment and computation: a combined approach to study the reactivity of palladium complexes in oxidation states 0 to IV. Chem Soc Rev 43:6609

    Article  CAS  PubMed  Google Scholar 

  52. Senn HM, Ziegler T (2004) Oxidative addition of aryl halides to palladium(0) complexes: a density-functional study including solvation. Organometallics 23:2980

    Article  CAS  Google Scholar 

  53. Fitton P, Johnson MP, McKeon JE (1968) Oxidative additions to palladium(0). Chem Commun 1:6

    Google Scholar 

  54. Menezes da Silva VH, Braga AAC, Cundari T (2016) N-heterocyclic carbene based nickel and palladium complexes: A DFT comparison of the Mizoroki–Heck catalytic cycles. Organometallics 35:3170–3181

    Article  CAS  Google Scholar 

  55. Guest D, Menezes da Silva VH, de LimaBatista AP, Roe M, Braga AAC, Navarro O (2015) (N-Heterocyclic Carbene)-palladate complexes in anionic Mizoroki–Heck coupling cycles: a combined experimental and computational study. Organometallics 34:2643

    Article  CAS  Google Scholar 

  56. Ariafard A, Lin Z (2006) Understanding the relative easiness of oxidative addition of aryl and alkyl halides to palladium(0). Organometallics 25:4030–4033

    Article  CAS  Google Scholar 

  57. Menezes da Silva VH, Morgon N, Correia CRD, Braga AAC (2019) DFT perspective on the selectivity and mechanism of ligand-free Heck reaction involving allylic esters and arenediazonium salts. J Organomet Chem 896:5–15

    Article  CAS  Google Scholar 

  58. Ryu H, Park J, Kim HK, Park JY, Kim S-T, Bailk M-H (2018) Pitfalls in Computational Modeling of Chemical Reactions and How To Avoid Them. Organometallics 37(19):3228–3239

    Article  CAS  Google Scholar 

  59. Harvey J, Himo F, Maseras F, Perrin L (2019) Scope and challenge of computational methods for studying mechanism and reactivity in homogeneous catalysis. ACS Catal 8:6803–6813

    Article  CAS  Google Scholar 

  60. Besora M, Braga AAC, Ujaque G, Maseras F, Lledós A (2011) The importance of conformational search: a test case on the catalytic cycle of the Suzuki–Miyaura cross-coupling. Theor Chem Acc 128:639–646

    Article  CAS  Google Scholar 

  61. Santoro S, Kalek M, Huang F, Himo F (2016) Elucidation of mechanisms and selectivities of metal-catalyzed reactions using quantum chemical methodology. Acc Chem Res 49:1006–1018

    Article  CAS  PubMed  Google Scholar 

  62. Mitoraj PM, Michalak A, Ziegler T (2009) A combined charge and energy decomposition scheme for bond analysis. J Chem Theory Comput 5(4):962–975

    Article  CAS  PubMed  Google Scholar 

  63. Schneider FSS, Segala M, Caramoni GF, da Silva EH, Parreira RLT, Schrekker HS, van Leeuwen PWNM (2018) How do secondary phosphine oxides interact with silver nanoclusters? insights from computation. J Phys Chem C 122(37):21449–21461

    Article  CAS  Google Scholar 

  64. Deegan MM, Muldoon JA, Hughes RP, Gluek DS, Rheingold AL (2018) Synthesis and structure of metal complexes of P-stereogenic chiral phosphiranes: an EDA-NOCV analysis of the donor-acceptor properties of phosphirane ligands. Organometallics 37(9):1473–1482

    Article  CAS  Google Scholar 

  65. Caramoni GF, Ortolan AO, Parreira RLT, da Silva EH (2015) Ruthenium nitrosyl complexes containing pyridine-functionalized carbenes—a theoretical insight. J Organomet Chem 799–800:54–60

    Article  CAS  Google Scholar 

Download references

Acknowledgements

V.H.M.S (Grant #2017/18207-1), C.R.D.C. (Grant #2014/25770-6), and A.A.C.B (Grant #2015/01491-3) thank the São Paulo Research Foundation for financial support. A.A.C.B (CNPq, Grant #309715/2017-2), C.C.O (159687/2015-2), and C.R.D.C. (CNPq, Grant 157522/2015) also thank the Brazilian National Research Council for financial support and fellowships. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor H. Menezes da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho & Francisco Bolivar Correto Machado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, V.H.M., Oliveira, C.C., Correia, C.R.D. et al. Heck arylation of acyclic olefins employing arenediazonium salts and chiral N,N ligands: new mechanistic insights from quantum-chemical calculations. Theor Chem Acc 139, 77 (2020). https://doi.org/10.1007/s00214-020-02588-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02588-x

Keywords

Navigation