Skip to main content
Log in

Scaling exchange and correlation in the on-top density functional of multiconfiguration pair-density functional theory: effect on electronic excitation energies and bond energies

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Multiconfiguration pair-density functional (MC-PDFT) theory provides an economical way to calculate the ground-state and excited-state energetics of strongly correlated systems. The energy is calculated from the kinetic energy, density, and on-top pair-density of a multiconfiguration wave function as the sum of kinetic energy, classical Coulomb energy, and on-top density functional energy. We have usually found good results with the translated Perdew–Burke–Ernzerhof (tPBE) on-top density functional, and in this article, we examine whether the results can be systematically improved by introducing scaling constants into the exchange and correlation terms. We find that only a small improvement is possible for electronic excitation energies and that no improvement is possible for bond energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Olivucci M, Sinicropi A (2005) Computational photochemistry. In: Theoretical and computational chemistry series, vol 16. Elsevier, pp 1–33

  2. Cheng Y-C, Fleming GR (2009) Dynamics of light harvesting in photosynthesis. Annu Rev Phys Chem 60:241–262. https://doi.org/10.1146/annurev.physchem.040808.090259

    Article  CAS  PubMed  Google Scholar 

  3. Johnston MB, Herz LM (2016) Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Acc Chem Res 49:146–154. https://doi.org/10.1021/acs.accounts.5b00411

    Article  CAS  PubMed  Google Scholar 

  4. Presti D, Pedone A, Ciofini I et al (2016) Optical properties of the dibenzothiazolylphenol molecular crystals through ONIOM calculations: the effect of the electrostatic embedding scheme. Theor Chem Acc. https://doi.org/10.1007/s00214-016-1808-x

    Article  Google Scholar 

  5. Presti D, Labat F, Pedone A et al (2016) Modeling emission features of salicylidene aniline molecular crystals: a QM/QM’ approach. J Comput Chem 37:861–870. https://doi.org/10.1002/jcc.24282

    Article  CAS  PubMed  Google Scholar 

  6. Presti D, Wilbraham L, Targa C et al (2017) Understanding aggregation-induced emission in molecular crystals: insights from theory. J Phys Chem C 121:5747–5752. https://doi.org/10.1021/acs.jpcc.7b00488

    Article  CAS  Google Scholar 

  7. Dreuw A, Head-Gordon M (2004) Failure of time-dependent density functional theory for long-range charge-transfer excited states: the Zincbacteriochlorin–Bacteriochlorin and Bacteriochlorophyll–Spheroidene Complexes. J Am Chem Soc 126:4007–4016. https://doi.org/10.1021/ja039556n

    Article  CAS  PubMed  Google Scholar 

  8. Li R, Zheng J, Truhlar DG (2010) Density functional approximations for charge transfer excitations with intermediate spatial overlap. Phys Chem Chem Phys 12:12697–12701. https://doi.org/10.1039/C0CP00549E

    Article  CAS  PubMed  Google Scholar 

  9. Zhao Y, Truhlar DG (2006) Density functional for spectroscopy: no long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J Phys Chem A 110:13126–13130. https://doi.org/10.1021/jp066479k

    Article  CAS  PubMed  Google Scholar 

  10. Tawada Y, Tsuneda T, Yanagisawa S et al (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120:8425–8433. https://doi.org/10.1063/1.1688752

    Article  CAS  PubMed  Google Scholar 

  11. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  12. Vydrov OA, Wu Q, Van Voorhis T (2008) Self-consistent implementation of a nonlocal van der Waals density functional with a Gaussian basis set. J Chem Phys 129:014106. https://doi.org/10.1063/1.2948400

    Article  CAS  PubMed  Google Scholar 

  13. Li Manni G, Carlson RK, Luo S et al (2014) Multiconfiguration pair-density functional theory. J Chem Theory Comput 10:3669–3680. https://doi.org/10.1021/ct500483t

    Article  CAS  PubMed  Google Scholar 

  14. Gagliardi L, Truhlar DG, Li Manni G et al (2017) Multiconfiguration pair-density functional theory: a new way to treat strongly correlated systems. Acc Chem Res 50:66–73. https://doi.org/10.1021/acs.accounts.6b00471

    Article  CAS  PubMed  Google Scholar 

  15. Ghosh S, Sonnenberger AL, Hoyer CE et al (2015) Multiconfiguration pair-density functional theory outperforms Kohn–Sham density functional theory and multireference perturbation theory for ground-state and excited-state charge transfer. J Chem Theory Comput 11:3643–3649. https://doi.org/10.1021/acs.jctc.5b00456

    Article  CAS  PubMed  Google Scholar 

  16. Hoyer CE, Ghosh S, Truhlar DG, Gagliardi L (2016) Multiconfiguration pair-density functional theory is as accurate as CASPT2 for electronic excitation. J Phys Chem Lett 7:586–591. https://doi.org/10.1021/acs.jpclett.5b02773

    Article  CAS  PubMed  Google Scholar 

  17. Carlson RK, Truhlar DG, Gagliardi L (2015) Multiconfiguration pair-density functional theory: a fully translated gradient approximation and its performance for transition metal dimers and the spectroscopy of Re2Cl82–. J Chem Theory Comput 11:4077–4085. https://doi.org/10.1021/acs.jctc.5b00609

    Article  CAS  PubMed  Google Scholar 

  18. Presti D, Truhlar DG, Gagliardi L (2018) Intramolecular charge transfer and local excitation in organic fluorescent photoredox catalysts explained by RASCI-PDFT. J Phys Chem C 122:12061–12070. https://doi.org/10.1021/acs.jpcc.8b01844

    Article  CAS  Google Scholar 

  19. Dong SS, Gagliardi L, Truhlar DG (2018) Excitation spectra of retinal by multiconfiguration pair-density functional theory. Phys Chem Chem Phys 20:7265–7276. https://doi.org/10.1039/c7cp07275a

    Article  CAS  PubMed  Google Scholar 

  20. Sharma P, Bernales V, Knecht S et al (2019) Density matrix renormalization group pair-density functional theory (DMRG-PDFT): singlet-triplet gaps in polyacenes and polyacetylenes. Chem Sci 10:1716–1723. https://doi.org/10.1039/c8sc03569e

    Article  CAS  PubMed  Google Scholar 

  21. Sharma P, Truhlar DG, Gagliardi L (2018) Multiconfiguration pair-density functional theory investigation of the electronic spectrum of MnO4-. J Chem Phys 148:124305. https://doi.org/10.1063/1.5021185

    Article  CAS  PubMed  Google Scholar 

  22. Stoneburner SJ, Gagliardi L (2018) air separation by catechol-ligated transition metals: a quantum chemical screening. J Phys Chem C 122:22345–22351. https://doi.org/10.1021/acs.jpcc.8b03599

    Article  CAS  Google Scholar 

  23. Presti D, Stoneburner SJ, Truhlar DG, Gagliardi L (2019) Full correlation in a multiconfigurational study of bimetallic clusters: restricted active space pair-density functional Theory study of [2Fe-2S] systems. J Phys Chem C 123:11899–11907. https://doi.org/10.1021/acs.jpcc.9b00222

    Article  CAS  Google Scholar 

  24. Gaggioli CA, Gagliardi L (2018) Theoretical investigation of plutonium-based single-molecule magnets. Inorg Chem 57:8098–8105. https://doi.org/10.1021/acs.inorgchem.8b00170

    Article  CAS  PubMed  Google Scholar 

  25. Ramirez BL, Sharma P, Eisenhart RJ et al (2019) Bimetallic nickel–lutetium complexes: tuning the properties and catalytic hydrogenation activity of the Ni site by varying the Lu coordination environment. Chem Sci 10:3375–3384. https://doi.org/10.1039/C8SC04712J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Andersson K, Malmqvist PA, Roos BO et al (1990) Second-order perturbation theory with a CASSCF reference function. J Phys Chem 94:5483–5488

    Article  CAS  Google Scholar 

  27. Andersson K, Malmqvist P, Roos BO (1992) Second-order perturbation theory with a complete active space self-consistent field reference function. J Chem Phys 96:1218–1226. https://doi.org/10.1063/1.462209

    Article  CAS  Google Scholar 

  28. Becke AD, Savin A, Stoll H (1995) Extension of the local-spin-density exchange-correlation approximation to multiplet states. Theor Chim Acta 91:147–156. https://doi.org/10.1007/BF01114982

    Article  CAS  Google Scholar 

  29. Staroverov VN, Davidson ER (2000) Charge densities for singlet and triplet electron pairs. Int J Quantum Chem 77:651–660. https://doi.org/10.1002/(SICI)1097-461X(2000)77:3%3c651:AID-QUA6%3e3.0.CO;2-N

    Article  CAS  Google Scholar 

  30. Verma P, Truhlar DG (2017) HLE16: a local Kohn–Sham gradient approximation with good performance for semiconductor band gaps and molecular excitation energies. J Phys Chem Lett 8:380–387. https://doi.org/10.1021/acs.jpclett.6b02757

    Article  CAS  PubMed  Google Scholar 

  31. Verma P, Truhlar DG (2017) HLE17: an improved local exchange-correlation functional for computing semiconductor band gaps and molecular excitation energies. J Phys Chem C 121:7144–7154. https://doi.org/10.1021/acs.jpcc.7b01066

    Article  CAS  Google Scholar 

  32. Miehlich B, Stoll H, Savin A (1997) A correlation-energy density functional for multideterminantal wavefunctions. Mol Phys 91:527–536. https://doi.org/10.1080/002689797171418

    Article  CAS  Google Scholar 

  33. Gräfenstein J, Cremer D (2005) Development of a CAS-DFT method covering non-dynamical and dynamical electron correlation in a balanced way. Mol Phys 103:279–308

    Article  Google Scholar 

  34. Yu HS, Li SL, Truhlar DG (2016) Perspective: Kohn–Sham density functional theory descending a staircase. J Chem Phys. https://doi.org/10.1063/1.4963168

    Article  PubMed  Google Scholar 

  35. Loos PF, Scemama A, Blondel A et al (2018) A mountaineering strategy to excited states: highly accurate reference energies and benchmarks. J Chem Theory Comput 14:4360–4379. https://doi.org/10.1021/acs.jctc.8b00406

    Article  CAS  PubMed  Google Scholar 

  36. Sharkas K, Savin A, Jensen HJA, Toulouse J (2012) A multiconfigurational hybrid density-functional theory. J Chem Phys 137:864. https://doi.org/10.1063/1.4733672

    Article  CAS  Google Scholar 

  37. Garza AJ, Bulik IW, Henderson TM, Scuseria GE (2015) Synergy between pair coupled cluster doubles and pair density functional theory. J Chem Phys. https://doi.org/10.1063/1.4906607

    Article  PubMed  Google Scholar 

  38. Garza AJ, Bulik IW, Henderson TM, Scuseria GE (2015) Range separated hybrids of pair coupled cluster doubles and density functionals. Phys Chem Chem Phys 17:22412–22422. https://doi.org/10.1039/c5cp02773j

    Article  CAS  PubMed  Google Scholar 

  39. Isegawa M, Truhlar DG (2013) Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm–Dancoff approximation. J Chem Phys 138:134111. https://doi.org/10.1063/1.4798402

    Article  CAS  PubMed  Google Scholar 

  40. Aquilante F, Autschbach J, Carlson RK et al (2016) Molcas 8: new capabilities for multiconfigurational quantum chemical calculations across the periodic table. J Comput Chem 37:506–541. https://doi.org/10.1002/jcc.24221

    Article  CAS  PubMed  Google Scholar 

  41. Roos BO, Taylor PR, Siegbahn PEM (1980) A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem Phys 48:157–173. https://doi.org/10.1016/0301-0104(80)80045-0

    Article  CAS  Google Scholar 

  42. Aquilante F, Lindh R, Bondo Pedersen T (2007) Unbiased auxiliary basis sets for accurate two-electron integral approximations. J Chem Phys 127:114107. https://doi.org/10.1063/1.2777146

    Article  CAS  PubMed  Google Scholar 

  43. Ghigo G, Roos BO, Malmqvist P-Å (2004) A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem Phys Lett 396:142–149. https://doi.org/10.1016/j.cplett.2004.08.032

    Article  CAS  Google Scholar 

  44. Stålring J, Bernhardssonn A, Lindh R (2001) Analytical gradients of a state average MCSCF state and a state average diagnostic. Mol Phys 99:103–114. https://doi.org/10.1080/002689700110005642

    Article  Google Scholar 

  45. Finley J, Malmqvist P-Å, Roos BO, Serrano-Andrés L (1998) The multi-state CASPT2 method. Chem Phys Lett 288:299–306. https://doi.org/10.1016/S0009-2614(98)00252-8

    Article  CAS  Google Scholar 

  46. Douglas M, Kroll NM (1974) Quantum electrodynamical corrections to the fine structure of helium. Ann Phys (N Y) 82:89–155. https://doi.org/10.1016/0003-4916(74)90333-9

    Article  CAS  Google Scholar 

  47. Wolf A, Reiher M, Hess BA (2002) The generalized Douglas–Kroll transformation. J Chem Phys 117:9215–9226. https://doi.org/10.1063/1.1515314

    Article  CAS  Google Scholar 

  48. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  49. Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806. https://doi.org/10.1063/1.462569

    Article  CAS  Google Scholar 

  50. Balabanov NB, Peterson KA (2005) Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. J Chem Phys 123:064107. https://doi.org/10.1063/1.1998907

    Article  CAS  Google Scholar 

  51. Roos BO, Lindh R, Malmqvist P-Å et al (2004) Main group atoms and dimers studied with a new relativistic ANO basis set. J Phys Chem A 108:2851–2858. https://doi.org/10.1021/jp031064+

    Article  CAS  Google Scholar 

  52. Papajak E, Truhlar DG (2011) Convergent partially augmented basis sets for post-Hartree–Fock calculations of molecular properties and reaction barrier heights. J Chem Theory Comput 7:10–18. https://doi.org/10.1021/ct1005533

    Article  CAS  PubMed  Google Scholar 

  53. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261. https://doi.org/10.1063/1.1677527

    Article  CAS  Google Scholar 

  54. Francl MM, Pietro WJ, Hehre WJ et al (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77:3654–3665. https://doi.org/10.1063/1.444267

    Article  CAS  Google Scholar 

  55. Kramida A, Martin WC (1997) A compilation of energy levels and wavelengths for the spectrum of neutral beryllium (Be l). J Phys Chem Ref Data 26:1185–1194. https://doi.org/10.1063/1.555999

    Article  CAS  Google Scholar 

  56. Moore CE (1993) CRC series in evaluated data in atomic physics. CRC Press, Boca Raton

    Google Scholar 

  57. Martin WC, Kaufman V, Musgrove A (1993) A compilation of energy levels and wavelengths for the spectrum of singly-ionized oxygen (O II). J Phys Chem Ref Data 22:1179–1212. https://doi.org/10.1063/1.555928

    Article  CAS  Google Scholar 

  58. Sugar J, Corliss C (1985) Atomic energy levels of the iron-period elements: potassium through nickel. J Phys Chem Ref Data 14(Suppl 2):1–664

    CAS  Google Scholar 

  59. Sugar J, Musgrove A (1988) Energy levels of molybdenum, Mo I through Mo XLII. J Phys Chem Ref Data 17:155–239. https://doi.org/10.1063/1.555818

    Article  CAS  Google Scholar 

  60. Moore CE (1971) Reference Data Series 35. National Bureau of Standards, Washington, DC

    Google Scholar 

  61. Caricato M, Trucks GW, Frisch MJ, Wiberg KB (2010) Electronic transition energies: a study of the performance of a large range of single reference density functional and wave function methods on valence and Rydberg states compared to experiment. J Chem Theory Comput 6:370–383. https://doi.org/10.1021/ct9005129

    Article  CAS  PubMed  Google Scholar 

  62. Walker IC, Palmer MH (1991) The electronic states of the azines. IV. Pyrazine, studied by VUV absorption, near-threshold electron energy-loss spectroscopy and ab initio multi-reference configuration interaction calculations. Chem Phys 153:169–187. https://doi.org/10.1016/0301-0104(91)90017-N

    Article  CAS  Google Scholar 

  63. Weber P, Reimers JR (1999) Ab initio and density functional calculations of the energies of the singlet and triplet valence excited states of pyrazine. J Phys Chem A 103:9821–9829. https://doi.org/10.1021/jp991403s

    Article  CAS  Google Scholar 

  64. Walker IC, Palmer MH, Hopkirk A (1990) The electronic states of the azines. II. Pyridine, studied by VUV absorption, near-threshold electron energy loss spectroscopy and ab initio multi-reference configuration interaction calculations. Chem Phys 141:365–378. https://doi.org/10.1016/0301-0104(90)87070-R

    Article  CAS  Google Scholar 

  65. Cai ZL, Reimers JR (2000) The Low-lying excited states of pyridine. J Phys Chem A 104:8389–8408. https://doi.org/10.1021/jp000962s

    Article  CAS  Google Scholar 

  66. Ferreira da Silva F, Almeida D, Martins G et al (2010) The electronic states of pyrimidine studied by VUV photoabsorption and electron energy-loss spectroscopy. Phys Chem Chem Phys 12:6717–6731. https://doi.org/10.1039/b927412j

    Article  CAS  PubMed  Google Scholar 

  67. Watson MA, Chan GKL (2012) Excited states of butadiene to chemical accuracy: reconciling theory and experiment. J Chem Theory Comput 8:4013–4018. https://doi.org/10.1021/ct300591z

    Article  CAS  PubMed  Google Scholar 

  68. Bolovinos A, Tsekeris P, Philis J et al (1984) Absolute vacuum ultraviolet absorption spectra of some gaseous azabenzenes. J Mol Spectrosc 103:240–256. https://doi.org/10.1016/0022-2852(84)90051-1

    Article  CAS  Google Scholar 

  69. Frueholz RP, Flicker WM, Mosher OA, Kuppermann A (1979) Electronic spectroscopy of 1,3-cyclopentadiene, 1,3-cyclohexadiene and 1,3-cycloheptadiene by electron impact. J Chem Phys 70:2003–2013. https://doi.org/10.1063/1.437626

    Article  CAS  Google Scholar 

  70. Hiraya A, Shobatake K (1991) Direct absorption spectra of jet-cooled benzene in 130–260 nm. J Chem Phys 94:7700–7706. https://doi.org/10.1063/1.460155

    Article  CAS  Google Scholar 

  71. Schreiber M, Silva-Junior MR, Sauer SPA, Thiel W (2008) Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J Chem Phys 128:134110. https://doi.org/10.1063/1.2889385

    Article  CAS  PubMed  Google Scholar 

  72. Huebner RH, Meilczarek SR, Kuyatt CE (1972) Electron energy-loss spectroscopy of naphthalene vapor. Chem Phys Lett 16:464–469. https://doi.org/10.1016/0009-2614(72)80401-9

    Article  CAS  Google Scholar 

  73. Flicker WM, Mosher OA, Kuppermann A (1976) Electron impact investigation of electronic excitations in furan, thiophene, and pyrrole. J Chem Phys 64:1315–1321. https://doi.org/10.1063/1.432397

    Article  CAS  Google Scholar 

  74. Leopold DG, Pendley RD, Roebber JL et al (1984) Direct absorption spectroscopy of jet-cooled polyenes. II. The 11Bu + ←11Ag-transitions of butadienes and hexatrienes. J Chem Phys 81:4218–4229. https://doi.org/10.1063/1.447453

    Article  CAS  Google Scholar 

  75. Druzhinin SI, Mayer P, Stalke D et al (2010) Intramolecular charge transfer with 1-tert-butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6) and other aminobenzonitriles. A comparison of experimental vapor phase spectra and crystal structures with calculations. J Am Chem Soc 132:7730–7744. https://doi.org/10.1021/ja101336n

    Article  CAS  PubMed  Google Scholar 

  76. Stein T, Kronik L, Baer R (2009) Reliable prediction of charge transfer excitations in molecular complexes using time-dependent density functional theory. J Am Chem Soc 131:2818–2820. https://doi.org/10.1021/ja8087482

    Article  CAS  PubMed  Google Scholar 

  77. Piecuch P, Kucharski SA, Kowalski K, Musiał M (2002) Efficient computer implementation of the renormalized coupled-cluster methods: the R-CCSD[T], R-CCSD(T), CR-CCSD[T], and CR-CCSD(T) approaches. Comput Phys Commun 149:71–96. https://doi.org/10.1016/S0010-4655(02)00598-2

    Article  CAS  Google Scholar 

  78. Kowalski K, Piecuch P (2004) New coupled-cluster methods with singles, doubles, and noniterative triples for high accuracy calculations of excited electronic states. J Chem Phys 120:1715–1738. https://doi.org/10.1063/1.1632474

    Article  CAS  PubMed  Google Scholar 

  79. Huber KP, Herzberg G, Huber KP, Herzberg G (1979) Constants of diatomic molecules. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  80. Lofthus A, Krupenie PH (1977) The spectrum of molecular nitrogen. J Phys Chem Ref Data 6:113–307. https://doi.org/10.1063/1.555546

    Article  CAS  Google Scholar 

  81. Bytautas L, Ruedenberg K (2005) Correlation energy extrapolation by intrinsic scaling. IV. Accurate binding energies of the homonuclear diatomic molecules carbon, nitrogen, oxygen, and fluorine. J Chem Phys 122:154110. https://doi.org/10.1063/1.1869493

    Article  CAS  PubMed  Google Scholar 

  82. Casey SM, Leopold DG (1993) Negative ion photoelectron spectroscopy of chromium dimer. J Phys Chem 97:816–830. https://doi.org/10.1021/j100106a005

    Article  CAS  Google Scholar 

  83. Vasiliu M, Feller D, Gole JL, Dixon DA (2010) Structures and heats of formation of simple alkaline earth metal compounds: fluorides, chlorides, oxides, and hydroxides for Be, Mg, and Ca. J Phys Chem A 114:9349–9358. https://doi.org/10.1021/jp1050657

    Article  CAS  PubMed  Google Scholar 

  84. Jiang W, Deyonker NJ, Determan JJ, Wilson AK (2012) Toward accurate theoretical thermochemistry of first row transition metal complexes. J Phys Chem A 116:870–885. https://doi.org/10.1021/jp205710e

    Article  CAS  PubMed  Google Scholar 

  85. Zhang W, Truhlar DG, Tang M (2013) Tests of exchange-correlation functional approximations against reliable experimental data for average bond energies of 3d transition metal compounds. J Chem Theory Comput 9:3965–3977. https://doi.org/10.1021/ct400418u

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under grant CHE–1746186.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donald G. Truhlar or Laura Gagliardi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“Festschrift in honor of Prof. Fernando R. Ornellas” guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho & Francisco Bolivar Correto Machado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1038 kb)

Supplementary material 2 (RAR 30413 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Presti, D., Kadlec, J., Truhlar, D.G. et al. Scaling exchange and correlation in the on-top density functional of multiconfiguration pair-density functional theory: effect on electronic excitation energies and bond energies. Theor Chem Acc 139, 30 (2020). https://doi.org/10.1007/s00214-019-2539-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2539-6

Keywords

Navigation