Skip to main content
Log in

Bonding and electronic structures in dinuclear (X)[(Ind)M2L2] complexes (M = Ni, Pd, L = CO, PEt3, X = Cl, Allyl, Ind = indenyl, Cp = cyclopentadienyl): analogy between four-electron donor ligands

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The calculations of bimetallic complexes of the type (X)[(Ind)M2(L)2] (M = Ni, Pd, L = CO, (PEt3) and X = Allyl, Cp and indenyl) have been done using two DFT functionals, namely BP86 and B3LYP*. The allyl, Cp and indenyl ligands adopt the same η3-coordination mode with a π bond and can be considered to be isolobal, while the chloride acts as σ- and π-donor. The computed structural and energetic parameters and energy decomposition yield chemically useful information. We report that the metal–metal bond distances are slightly sensitive to the electron donation and electron π-backdonation as the isolobal prediction suggests. Changing the metal from Ni to Pd has the result of increasing the metal–metal bond distance, decreasing the natural population of Pd and the weakness interactions between the X ligand and the [(Ind)M2(L)2]+ fragment. The results showed that the four ligands behave quite similarly in terms of bonding, coordination mode and donation and π-backdonation properties highlighted by the orbitals’ populations and the energy decomposition. However, the strength of interactions can be classified as follows: Cl < Cp ≈ Ind < Allyl. In all the complexes studied, the M22+ moiety adopts a single metal–metal bonding attributing the 16-MVE configuration to each M(I) cation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin S, Agapie T (2011) Cross-coupling chemistry at mononuclear and dinuclear nickel complexes. Synlett 01:1–5

    Google Scholar 

  2. Hazari N, Hruszkewycz DP (2016) Dinuclear Pd(I) complexes with bridging allyl and related ligands. Chem Soc Rev 45:2871–2899

    CAS  PubMed  Google Scholar 

  3. Paton RS, Brown JM (2012) Dinuclear palladium complexes-precursors or catalysts. Angew Chem Int Ed Engl 51:10448–10450

    CAS  PubMed  Google Scholar 

  4. Zimmermann P, Limberg C (2017) Activation of small molecules at nickel (I) moieties. J Am Chem Soc 139:4233–4242

    CAS  PubMed  Google Scholar 

  5. Bonney KJ, Schoenebeck F (2014) Experiment and computation: a combined approach to study the reactivity of palladium complexes in oxidation states 0 to IV. Chem Soc Rev 43:6609–6638

    CAS  PubMed  Google Scholar 

  6. Liu Q, Dong X, Li J, Xiao J, Dong Y, Liu H (2015) Recent advances on palladium radical involved reactions. ACS Catal 5:6111–6137

    CAS  Google Scholar 

  7. Werner H (1981) Novel types of metal–metal bonded complexes containing allyl and cyclopentadienyl bridging ligands. Adv Organomet Chem 19:155–182

    CAS  Google Scholar 

  8. Murahashi T, Kurosawa H (2002) Organopalladium complexes containing palladium–palladium bonds. Coord Chem Rev 231:207–228

    CAS  Google Scholar 

  9. Hazari N, Hruszkewycz DP, Wu J (2011) Pd(I)-bridging allyl dimers: a new system for the catalytic functionalization of carbon dioxide. Synlett 13:1793–1797

    Google Scholar 

  10. Inatomi T, Koga Y, Matsubara K (2018) Dinuclear nickel (I) and palladium (I) complexes for highly active transformations of organic compounds. Molecules 23(1):140

    PubMed Central  Google Scholar 

  11. Hazari N, Hruszkewycz DP (2016) Dinuclear Pd(I) complexes with bridging allyl and related ligands. Chem Soc Rev 45(10):2871–2899

    CAS  PubMed  Google Scholar 

  12. Werner H et al (1975) Preparation and structure of novel binuclear palladium complexes containing a metal–metal bond: μ-(η-C5H5)-μ-(η-C4H7)Pd2L2. Angew Chem Int Ed Engl 14(3):185–186

    Google Scholar 

  13. Werner H, Kühn A, Tune DJ, Krüger C, Brauer DJ, Sekutowski JC, Tsay YH (1977) Untersuchungenzur Reaktivität von Metall-π-Komplexen, XXII. Sandwichartiggebaute (Pd–Pd)-Zweikernkomplexemitbrückenbildenden Cyclopentadienyl-und Allyl-Liganden. Chem Beri 110:1763–1775

    CAS  Google Scholar 

  14. Kühn A, Werner H (1979) Untersuchungenzurreaktivität von metall-π-komplexen: XXIX. Synthesewege und reaktivität von (Pd–Pd)-und (Pt–Pt)-zweikernkomplexen des typs (μ-C5H5)(μ-allyl)M2L2. J Organomet Chem 179:421–438

    Google Scholar 

  15. Werner H, Kühn A (1977) A general method for the synthesis of sandwich-type complexes with a Pd–Pd or Pt–Pt bond. Angew Chem Int Ed Engl 16:412–413

    Google Scholar 

  16. Werner H, Kraus HJ (1979) Synthesis and structural dynamics of bis(cyclopentadienyl) phosphanepalladium complexes. Angew Chem Int Ed Engl 18:948–949

    Google Scholar 

  17. Norton DM, Mitchell EA, Botros NR, Jessop PG, Baird MC (2009) A superior precursor for palladium (0)-based cross-coupling and other catalytic reactions. J Org Chem 74:6674–6680

    CAS  PubMed  Google Scholar 

  18. Chalkley MJ, Guard LM, Hazari N, Hofmann P, Hruszkewycz DP, Schmeier TJ, Takase MK (2013) Synthesis, electronic structure, and reactivity of palladium (I) dimers with bridging allyl, cyclopentadienyl, and indenyl ligands. Organometallics 32:4223–4238

    CAS  Google Scholar 

  19. Melvin PR, Nova A, Balcells D, Dai W, Hazari N, Hruszkewycz DP, Tudge MT et al (2015) Design of a versatile and improved precatalyst scaffold for palladium-catalyzed cross-coupling:(η3-1-tBu-indenyl) 2 (μ-Cl) 2Pd2. ACS Catal 5:3680–3688

    CAS  Google Scholar 

  20. Tanase T, Nomura T, Fukushima T, Yamamoto Y, Kobayashi K (1993) Synthesis and characterization of a binuclear palladium (I) complex with bridging η3-indenyl ligands, Pd2 (μ-η3-indenyl)2(isocyanide)2, and its transformation to a tetranuclear palladium (I) cluster of isocyanides, Pd4 (μ-acetate) 4 (μ-isocyanide) 4. Inorg Chem 32:4578–4584

    CAS  Google Scholar 

  21. Tanase T, Nomura T, Yamamoto Y, Kobayashi K (1991) Synthesis and characterization of binuclear palladium complexes of isocyanides with novel bridging η3-indenyl ligands. Crytal structure of [Pd2(μ-η3-indenyl)2(RNC)2](R = 2, 6-dimethylphenyl). J Organomet Chem 410:C25–C28

    CAS  Google Scholar 

  22. Dai W, Chalkley MJ, Brudvig GW, Hazari N, Melvin PR, Pokhrel R, Takase MK (2013) Synthesis and properties of NHC-supported palladium (I) dimers with bridging allyl, cyclopentadienyl, and indenyl ligands. Organometallics 32:5114–5127

    CAS  Google Scholar 

  23. Tanase T, Fukushima T, Nomura T, Yamamoto Y, Kobayashi K (1994) Synthesis and characterization of binuclear palladium (I) complexes of isocyanides with phenyl-substituted cyclopentadienyl and tris (pyrazol-1-yl) borate ligands. Inorg Chem 33(1):32–39

    CAS  Google Scholar 

  24. Sui-Seng C, Enright GD, Zargarian D (2006) New palladium (II)-(η3/5 or η1-Indenyl) and dipalladium (I)-(μ, η3-Indenyl) complexes. J Am Chem Soc 128:6508–6519

    CAS  PubMed  Google Scholar 

  25. Michael P, Mingos D (1996) Synthesis and structural characterisation of [Pd 2 (Á-Br) 2 (PBu t 3) 2], an example of a palladium(I)–palladium(I) dimer. J Chem Soc Dalton Trans 23:4313–4314

    Google Scholar 

  26. Proutiere F, Lyngvi E, Aufiero M, Sanhueza IA, Schoenebeck F (2014) Combining the reactivity properties of PCy3 and PtBu3 into a single ligand, P(iPr)(tBu)2. Reaction via mono- or bisphosphine palladium(0) centers and palladium(I) dimer formation. Organometallics 33:6879–6884

    CAS  Google Scholar 

  27. Beck R, Johnson SA (2013) Dinuclear Ni(I)–Ni(I) complexes with syn-facial bridging ligands from Ni(I) precursors or Ni(II)/Ni(0) comproportionation. Organometallics 32:2944–2951

    CAS  Google Scholar 

  28. Wang H, Sun S, Wang H, King RB (2016) Binuclear cyclooctatetraene–iron carbonyl complexes: examples of fluxionality and valence tautomerism. N J Chem 40:1521–1528

    CAS  Google Scholar 

  29. Jin R, Chen X, Du Q, Feng H, Xie Y, King RB, Schaefer HF (2016) Binuclear iron carbonyl complexes of thialene. RSC Adv 6:82661–82668

    CAS  Google Scholar 

  30. Wang H, Sun Z, Xie Y, King RB, Schaefer HF III (2010) Unsaturation and variable hapticity in binuclear azulene iron carbonyl complexes. Organometallics 29:630–641

    Google Scholar 

  31. Zendaoui SM, Zouchoune B (2013) Molecular properties and electronic structure of phenazine ligand in binuclear molybdenum and manganese metal complexes: a density functional theory study. Polyhedron 51:123–131

    CAS  Google Scholar 

  32. Zendaoui SM, Saillard JY, Zouchoune B (2016) Ten-electron donor indenyl anion in binuclear transition-metal sandwich complexes: electronic structure and bonding analysis. Chem Select 1(5):940–948

    CAS  Google Scholar 

  33. Zouchoune B, Zendaoui SM, Saillard JY (2018) Why is bis-indenylchromium a dimer? A DFT investigation. J Organomet Chem 858:47–52

    CAS  Google Scholar 

  34. Drideh S, Zouchoune B, Zendaoui SM, Saillard JY (2018) Electronic structure and structural diversity in indenyl in heterobinuclear transition-metal half-sandwich complexes. Theor Chem Acc 137(7):99

    Google Scholar 

  35. Nemdili H, Zouchoune B, Zendaoui SM, Ferhati A (2019) Structural, bonding and redox properties of 34-electron bimetallic complexes and their oxidized 32-and 33-electron and reduced 35-and 36-electron derivatives containing the indenyl fused π-system: a DFT overview. Polyhedron 160:219–228

    CAS  Google Scholar 

  36. Korichi H, Zouchoune F, Zendaoui SM, Zouchoune B, Saillard JY (2010) The coordination chemistry of azulene: a comprehensive DFT investigation. Organometallics 29:1693–1706

    CAS  Google Scholar 

  37. Merzoug M, Zouchoune B (2014) Coordination diversity of the phenazine ligand in binuclear transition metal sandwich complexes: theoretical investigation. J Organomet Chem 770:69–78

    CAS  Google Scholar 

  38. Bensalem N, Zouchoune B (2016) Coordination capabilities of anthracene ligand in binuclear sandwich complexes: DFT investigation. Struct Chem 27(6):1781–1792

    CAS  Google Scholar 

  39. Naili N, Zouchoune B (2018) Structural diversity of homobinuclear transition metal complexes of the phenazine ligand: theoretical investigation. Struct Chem 29(3):725–739

    CAS  Google Scholar 

  40. ADF2016, SCM (2016) Theoretical chemistry. Vrije Universiteit, Amsterdam

    Google Scholar 

  41. Baerends EJ, Ellis DE, Ros PJCP (1973) Self-consistent molecular Hartree–Fock Slater calculations I. The computational procedure. Chem Phys 2:41–51

    CAS  Google Scholar 

  42. TeVelde G, Baerends EJ (1992) Numerical integration for polyatomic systems. J Comput Phys 99:84–98

    CAS  Google Scholar 

  43. Guerra CF, Snijders JG, teVelde GT, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Acc 99(6):391–403

    CAS  Google Scholar 

  44. Bickelhaupt FM, Baerends EJ (2000) Kohn–Sham density functional theory: predicting and understanding chemistry. Rev Comput Chem 15:1–86

    CAS  Google Scholar 

  45. TeVelde GT, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJ, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967

    CAS  Google Scholar 

  46. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    CAS  Google Scholar 

  47. Becke AD (1986) Density functional calculations of molecular bond energies. J Chem Phys 84:4524–4529

    CAS  Google Scholar 

  48. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    CAS  Google Scholar 

  49. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824

    CAS  Google Scholar 

  50. Perdew JP (1986) Erratum: density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 34:7406

    CAS  Google Scholar 

  51. Salomon O, Reiher M, Hess BA (2002) Assertion and validation of the performance of the B3LYP* functional for the first transition metal row and the G2 test set. J Chem Phys 117:4729–4737

    CAS  Google Scholar 

  52. Becke AD (1993) Becke’s three parameter hybrid method using the LYP correlation functional. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  53. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    CAS  Google Scholar 

  54. Versluis L, Ziegler T (1988) The determination of molecular structures by density functional theory. The evaluation of analytical energy gradients by numerical integration. J Chem Phys 88:322–328

    CAS  Google Scholar 

  55. Fan L, Ziegler T (1992) Application of density functional theory to infrared absorption intensity calculations on main group molecules. J Chem Phys 96:9005–9012

    CAS  Google Scholar 

  56. Fan L, Ziegler T (1992) Application of density functional theory to infrared absorption intensity calculations on transition-metal carbonyls. J Phys Chem 96:6937–6941

    CAS  Google Scholar 

  57. Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096

    CAS  Google Scholar 

  58. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor–acceptor perspective. Cambridge University Press, Cambridge

    Google Scholar 

  59. Weinhold F, Glendening ED (2001) NBO 5.0 program manual: natural bond orbital analysis programs. Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison

    Google Scholar 

  60. Zouchoune B, Saiad A (2018) Ligands’ σ-donation and π-backdonation effects on metal-metal bonding in trinuclear [M3(Tr)2(L)3]2 + (M = Fe, Ni, Pd, Pt, Tr = Tropylium and L = CO, HCN and C2H4) sandwich compounds: theoretical investigation. Inorg Chim Acta 473:204–215

    CAS  Google Scholar 

  61. Zouchoune B (2018) Stability and possible multiple metal-metal bonding in tetranuclear sandwich complexes of cyclooctatetraene ligand. Struct Chem 29:937–945

    CAS  Google Scholar 

  62. Fadli S, Zouchoune B (2017) Coordination chemistry and bonding analysis of tetranuclear transition metal pyrene sandwich complexes. Struct Chem 28:985–997

    CAS  Google Scholar 

  63. Benmachiche A, Zouchoune B (2019) Coordination and ligands’ effects in trinuclear [Pd3(COT)2(L)]2 + (L = H2O, CO, N2, HCN, HNC, NH3, PH3, PCl3, PF3, CS, CH2) sandwich complexes of cyclooctatetraene: theoretical investigation. Struct Chem 30:1–8

    Google Scholar 

  64. Yamamoto Y, Yamazaki H (1985) Dichlorotetrakis (isocyanide) dipalladium (I) containing a metal–metal bond. Bull Chem Soc Jpn 58:1843–1844

    CAS  Google Scholar 

  65. Yamamoto Y, Yamazaki H (1986) Studies on interactions of isocyanides with transition-metal complexes. X-ray crystal structure of dichlorobis (2, 6-dimethylphenyl isocyanide) bis (pyridine) dipalladium. Unusual carbon-nitrogen-carbon bond angles and infrared spectrum in bridging isocyanide groups. Inorg Chem 25(18):3327–3329

    CAS  Google Scholar 

  66. Holloway RG, Penfold BR, Colton R, McCormick MJ (1976) Crystal and molecular structure of bis-µ-(bisdiphenylphosphinomethane)-dibromodipalladium (Pd-Pd), a compound containing palladium (I). J Chem Soc Chem Commun 12:485–486

    Google Scholar 

  67. Kullberg ML, Lemke FR, Powell DR, Kubiak CP (1985) Palladium–palladium. Sigma bonds supported by bis(dimethylphosphino)methane (dmpm). Synthetic, structural, and Raman studies of Pd2X2(dmpm)2 (X = Cl, Br, OH). Inorg Chem 24:3589–3593

    CAS  Google Scholar 

  68. Morokuma K (1971) Molecular orbital studies of hydrogen bonds. III. C=O···H–O hydrogen bond in H2CO···H2O and H2CO···2H2O. J Chem Phys 55:1236–1244

    CAS  Google Scholar 

  69. Ziegler T, Rauk A (1979) Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as. sigma. donors and. pi. acceptors. A theoretical study by the Hartree–Fock–Slater transition-state method. Inorg Chem 18:1755–1759

    CAS  Google Scholar 

  70. Ziegler T, Rauk A (1979) A theoretical study of the ethylene-metal bond in complexes between copper (1 +), silver (1 +), gold (1 +), platinum (0) or platinum (2 +) and ethylene, based on the Hartree–Fock–Slater transition-state method. Inorg Chem 18:1558–1565

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Algerian MESRS (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique) and DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Bachir Zouchoune.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

This work is dedicated to Doctor Jean-François Halet on the occasion of his 60th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7606 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mecheri, S., Zouchoune, B. & Zendaoui, SM. Bonding and electronic structures in dinuclear (X)[(Ind)M2L2] complexes (M = Ni, Pd, L = CO, PEt3, X = Cl, Allyl, Ind = indenyl, Cp = cyclopentadienyl): analogy between four-electron donor ligands. Theor Chem Acc 139, 12 (2020). https://doi.org/10.1007/s00214-019-2526-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2526-y

Keywords

Navigation