Skip to main content
Log in

Locality and strength of intermolecular interactions in organic crystals: using conceptual density functional theory (CDFT) to characterize a highly polymorphic system

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Intermolecular interactions of seven polymorphs of a model organic compound were elucidated through electronic structure-based local descriptors, derived from conceptual density functional theory, and their correlations with interaction energies. Visual and statistical analyses were conducted to inspect the underlying connections between interacting modes and electronic properties. It was found that Fukui function and Fukui potential determine interactions especially where ππ stacking is predominant in a contacting motif. The overall large regions of negative and positive values of electronic properties on interacting motifs unveil the significant correlation of the local electronic properties with the intermolecular interactions. This study further confirmed our previous reports that local softness and hardness descriptors, such as Fukui functions, are capable of characterizing the locality and strength of intermolecular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    CAS  PubMed  Google Scholar 

  2. Li T, Liu S, Feng S, Aubrey CE (2005) Face-integrated fukui function: understanding wettability anisotropy of molecular crystals from density functional theory. J Am Chem Soc 127:1364–1365

    CAS  PubMed  Google Scholar 

  3. Liu S, Li T, Ayers PW (2009) Potentialphilicity and potentialphobicity: reactivity indicators for external potential changes from density functional reactivity theory. J Chem Phys 131:114106-6

    Google Scholar 

  4. Li T, Feng S (2005) Study of crystal packing on the solid-state reactivity of indomethacin with density functional theory. Pharm Res 22:1964–1969

    CAS  PubMed  Google Scholar 

  5. Li T, Ayers PW, Liu S, Swadley MJ, Medendorp CA (2009) Crystallization force—a density functional theory concept for revealing intermolecular interactions and molecular packing in organic crystals. Chem Eur J 15:361–371

    CAS  PubMed  Google Scholar 

  6. Long S, Zhou P, Theiss KL, Seigler MA, Li T (2015) Solid-state identity of 2-hydroxynicotinic acid and its polymorphism. Cryst Eng Commun 17:5195–5205

    CAS  Google Scholar 

  7. Li T, Zhou P, Mattei A (2011) Electronic origin of pyridinyl N as a better hydrogen-bonding acceptor than carbonyl O. Cryst Eng Commun 13:6356–6360

    CAS  Google Scholar 

  8. Swadley MJ, Zhou P, Li T (2015) Reactivity of triacetone triperoxide and diacetone diperoxide: insights from nuclear fukui function. Front Chem Sci Eng 9:114–123

    CAS  Google Scholar 

  9. Zhang M, Li T (2014) Intermolecular interactions in organic crystals: gaining insight from electronic structure analysis by density functional theory. Cryst Eng Commun 16:7162–7171

    CAS  Google Scholar 

  10. Mattei A, Li T (2011) Interplay between molecular conformation and intermolecular interactions in conformational polymorphism: a molecular perspective from electronic calculations of tolfenamic acid. Int J Pharm 418:179–186

    CAS  PubMed  Google Scholar 

  11. Zhou P, Ayers PW, Liu S, Li T (2012) Natural orbital Fukui function and application in understanding cycloaddition reaction mechanisms. Phys Chem Chem Phys 14:9890–9896

    CAS  PubMed  Google Scholar 

  12. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    CAS  Google Scholar 

  13. Pearson RG (1966) Acids and bases. Science 151:172–177

    CAS  PubMed  Google Scholar 

  14. Parr RG, Pearson RG (1983) Absolute hardness: companion partner to absolute electronegativity. J Am Chem Soc 105:7512–7516

    CAS  Google Scholar 

  15. Chattaraj PK, Lee H, Parr RG (1991) HSAB Principle. J Am Chem Soc 113:1856–1857

    Google Scholar 

  16. Torrent-Sucarrat M, De Proft F, Geerlings P, Ayers PW (2008) Do the local softness and hardness indicate the softest and hardest regions of a molecule? Chem Eur J 14:8652–8660

    CAS  PubMed  Google Scholar 

  17. Torrent-Sucarrat M, De Proft F, Ayers PW, Geerlings P (2010) On the applicability of local softness and hardness. Phys Chem Chem Phys 12:1072–1080

    CAS  PubMed  Google Scholar 

  18. Yu L, Stephenson GA, Mitchell CA, Bunnell CA, Snorek SV, Bowyer JJ, Borchardt TB, Stowell JG, Byrn SR (2000) Thermochemistry and conformational polymorphism of a hexamorphic crystal system. J Am Chem Soc 122:585–591

    CAS  Google Scholar 

  19. Mitchell CA, Yu L, Ward MD (2001) Selective nucleation and discovery of organic polymorphs through epitaxy with single crystal substrates. J Am Chem Soc 123:10830–10839

    CAS  PubMed  Google Scholar 

  20. Yu L (2010) Polymorphism in molecular solids: an extraordinary system of red, orange, and yellow crystals. Acc Chem Res 43:1257–1266

    CAS  PubMed  Google Scholar 

  21. Cuevas-Saavedra R, Rabi N, Ayers PW (2011) The unconstrained local hardness: an intriguing quantity, beset by problems. Phys Chem Chem Phys 13:19594–19600

    CAS  PubMed  Google Scholar 

  22. Gál T (2012) Why the traditional concept of local hardness does not work? Theor Chem Acc 131:1223–1237

    Google Scholar 

  23. Chattaraj PK, Roy DR, Geerlings P, Torrent-Sucarrat M (2007) Local hardness: a critical account. Theor Chem Acc 118:923–930

    CAS  Google Scholar 

  24. Olah J, De Proft F, Veszpremi T, Geerlings P (2005) Hard–soft acid–base interactions of silylenes and germylenes. J Phys Chem A 109:1608–1615

    CAS  PubMed  Google Scholar 

  25. Langenaeker W, De Proft F, Geerlings P (1995) Development of local hardness related reactivity indices: their application in a study of the SE at monosubstituted benzenes within the HSAB context. J Phys Chem 99:6424–6431

    CAS  Google Scholar 

  26. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  27. Berkowitz M, Parr RG (1988) Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities. J Chem Phys 88:2554–2557

    CAS  Google Scholar 

  28. Yang W, Parr RG (1985) Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci USA 82:6723–6726

    CAS  PubMed  Google Scholar 

  29. Ayers PW, Levy M (2000) Perspective on “density functional approach to the frontier electron-theory of chemical reactivity”. Theor Chem Acc 103:353–360

    CAS  Google Scholar 

  30. Mignon P, Loverix S, Steyaert J, Geerlings P (2005) Influence of the π–π interaction on the hydrogen bonding capacity of stacked DNA/RNA bases. Nucleic Acids Res 33:1779–1789

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Saha S, Bhattacharjee R, Roy RK (2013) Hardness potential derivatives and their relation to fukui indices. J Comput Chem 34:662–672

    CAS  PubMed  Google Scholar 

  32. Cárdenas C, Tiznado W, Ayers PW, Fuentealba P (2011) The Fukui potential and the capacity of charge and the global hardness of atoms. J Phys Chem A 115:2325–2331

    PubMed  Google Scholar 

  33. Allen FH (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58:380–388

    PubMed  Google Scholar 

  34. Dovesi R, Saunders VR, Roetti C, Orlando R, Zicowich-Wilson CM, Pascale B, Civalerri B, Doll K, Harrison NM, Bush IJ, Arco PD, Llunell M, Causa M, Noël Y (2014) CRYSTAL14 user’s manual. University of Torino, Torino

    Google Scholar 

  35. Frisch MJ et al (2010) Gaussian 09. Gaussian Inc., Wallingford

    Google Scholar 

  36. Thompson D, Braun J, Ford R (2000) OpenDX: paths to visualization. VIS Inc., Missoula

    Google Scholar 

  37. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138

    CAS  Google Scholar 

  38. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys 124:034108-15

    Google Scholar 

  39. Schwabe T, Grimme S (2007) Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Phys Chem Chem Phys 9:3397–3406

    CAS  PubMed  Google Scholar 

  40. Beran Gregory JO (2016) Modeling polymorphic molecular crystals with electronic structure theory. Chem Rev 116:5567–5613

    CAS  PubMed  Google Scholar 

  41. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. some procedures with reduced errors. Mol Phys 19:553–566

    CAS  Google Scholar 

  42. Bartolotti LJ, Ayers PW (2005) An example where orbital relaxation is an important contribution to the Fukui Function. J Phys Chem A 109:1146–1151

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by National Science Foundation (NSF) and Chao Endowment Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonglei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles derived from the Chemical Concepts from Theory and Computation.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1506 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, R., Verma, K., Zhang, M. et al. Locality and strength of intermolecular interactions in organic crystals: using conceptual density functional theory (CDFT) to characterize a highly polymorphic system. Theor Chem Acc 138, 121 (2019). https://doi.org/10.1007/s00214-019-2508-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2508-0

Keywords

Navigation