Advertisement

Theoretical Chemistry Accounts

, 138:110 | Cite as

Size effects in charge migration in alkyne chains

  • Victor Despré
  • Alexander I. KuleffEmail author
Regular Article
  • 79 Downloads
Part of the following topical collections:
  1. 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018)

Abstract

The charge migration dynamics initiated by an outer-valence ionization of alkyne chains containing between 4 and 12 carbon atoms is studied using ab initio methods only. It is shown that the removal of a \(\hbox {HOMO}\)–1 electron from each of the molecules in the series leads to the population of the same structure of a main state and correlation satellites in their ionization spectra. The resulting pure electron dynamics manifest as an ultrafast charge migration oscillations between the center of the molecule and its extremities. The charge migration follows the same pattern in all studied cases with a slight monotonic increase of the time scale with the system size. This shows that the correlation-driven charge migration can exhibit scaling properties and constitutes a proof of concept for the possibility of molecular design for charge migration. As alkynes are used as molecular wires, it is argued that the present results may open the door for ultrafast molecular electronics.

Keywords

Charge migration Electronic correlation Size effects Attosecond science 

Notes

Acknowledgements

Financial support by the DFG through QUTIF Priority Programme and by the US ARO (Grant Number W911NF-14-1-0383) is gratefully acknowledged.

References

  1. 1.
    Krausz F, Ivanov M (2009) Rev Mod Phys 81(1):163Google Scholar
  2. 2.
    Nisoli M, Decleva P, Calegari F, Palacios A, Martín F (2017) Chem Rev 117(16):10760PubMedGoogle Scholar
  3. 3.
    Klünder K, Dahlström J, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A et al (2011) Phys Rev Lett 106(14):143002PubMedGoogle Scholar
  4. 4.
    Uiberacker M, Uphues T, Schultze M, Verhoef AJ, Yakovlev V, Kling MF, Rauschenberger J, Kabachnik NM, Schröder H, Lezius M et al (2007) Nature 446(7136):627PubMedGoogle Scholar
  5. 5.
    Neidel C, Klei J, Yang CH, Rouzée A, Vrakking M, Klünder K, Miranda M, Arnold C, Fordell T, L’Huillier A et al (2013) Phys Rev Lett 111(3):033001PubMedGoogle Scholar
  6. 6.
    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J, Smolkowska A, Logman P, Lepine F, Cauchy C, Zamith S, Marchenko T et al (2011) Science 331(6013):61PubMedGoogle Scholar
  7. 7.
    Kling M, Siedschlag C, Verhoef AJ, Khan J, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F et al (2006) Science 312(5771):246PubMedGoogle Scholar
  8. 8.
    Lépine F, Ivanov MY, Vrakking MJ (2014) Nat Photon 8(3):195Google Scholar
  9. 9.
    Siu W, Kelkensberg F, Gademann G, Rouzée A, Johnsson P, Dowek D, Lucchini M, Calegari F, De Giovannini U, Rubio A et al (2011) Phys Rev A 84(6):063412Google Scholar
  10. 10.
    Lucchini M, Kim K, Calegari F, Kelkensberg F, Siu W, Sansone G, Vrakking M, Hochlaf M, Nisoli M (2012) Phys Rev A 86(4):043404Google Scholar
  11. 11.
    Belshaw L, Calegari F, Duffy MJ, Trabattoni A, Poletto L, Nisoli M, Greenwood JB (2012) J Phys Chem Lett 3(24):3751PubMedGoogle Scholar
  12. 12.
    Calegari F, Ayuso D, Trabattoni A, Belshaw L, De Camillis S, Anumula S, Frassetto F, Poletto L, Palacios A, Decleva P et al (2014) Science 346(6207):336PubMedGoogle Scholar
  13. 13.
    Marciniak A, Yamazaki K, Maeda S, Reduzzi M, Despré V, Hervé M, Meziane M, Niehaus TA, Loriot V, Kuleff AI et al (2018) J Phys Chem Lett 9(24):6927PubMedGoogle Scholar
  14. 14.
    Galbraith M, Scheit S, Golubev N, Reitsma G, Zhavoronkov N, Despré V, Lépine F, Kuleff A, Vrakking M, Kornilov O et al (2017) Nat Commun 8(1):1018PubMedPubMedCentralGoogle Scholar
  15. 15.
    Galbraith M, Smeenk C, Reitsma G, Marciniak A, Despré V, Mikosch J, Zhavoronkov N, Vrakking M, Kornilov O, Lépine F (2017) Phys Chem Chem Phys 19(30):19822PubMedGoogle Scholar
  16. 16.
    Marciniak A, Despré V, Barillot T, Rouzée A, Galbraith M, Klei J, Yang CH, Smeenk C, Loriot V, Reddy SN et al (2015) Nat Commun 6:7909PubMedPubMedCentralGoogle Scholar
  17. 17.
    Marciniak A, Despré V, Loriot V, Karras G, Hervé M, Quintard L, Catoire F, Joblin C, Constant E, Kuleff A et al (2019) Nat Commun 10(1):337PubMedPubMedCentralGoogle Scholar
  18. 18.
    Cederbaum LS, Zobeley J (1999) Chem Phys Lett 307(3):205Google Scholar
  19. 19.
    Kuleff AI, Cederbaum LS (2014) J Phys B 47(12):124002Google Scholar
  20. 20.
    Remacle F, Levine RD, Ratner MA (1998) Chem Phys Lett 285(1–2):25Google Scholar
  21. 21.
    Xiang D, Wang X, Jia C, Lee T, Guo X (2016) Chem Rev 116(7):4318PubMedGoogle Scholar
  22. 22.
    Hennig H, Breidbach J, Cederbaum LS (2005) J Phys Chem A 109(3):409PubMedGoogle Scholar
  23. 23.
    Kuleff AI, Lünnemann S, Cederbaum LS (2010) J Phys Chem A 114(33):8676PubMedGoogle Scholar
  24. 24.
    Kuleff AI, Kryzhevoi NV, Pernpointner M, Cederbaum LS (2016) Phys Rev Lett 117:093002PubMedGoogle Scholar
  25. 25.
    Kuś T, Mignolet B, Levine RD, Remacle F (2013) J Phys Chem A 117(40):10513PubMedGoogle Scholar
  26. 26.
    Mignolet B, Levine RD, Remacle F (2014) J Phys B At Mol Opt Phys 47(12):124011Google Scholar
  27. 27.
    Sun S, Mignolet B, Fan L, Li W, Levine RD, Remacle F (2017) J Phys Chem A 121(7):1442PubMedGoogle Scholar
  28. 28.
    Lara-Astiaso M, Ayuso D, Tavernelli I, Decleva P, Palacios A, Martín F (2016) Faraday Discuss 194:41PubMedGoogle Scholar
  29. 29.
    Lara-Astiaso M, Galli M, Trabattoni A, Palacios A, Ayuso D, Frassetto F, Poletto L, De Camillis S, Greenwood J, Decleva P, Tavernelli I, Calegari F, Nisoli M, Martín F (2018) J Phys Chem Lett 9(16):4570PubMedGoogle Scholar
  30. 30.
    Bandrauk AD, Chelkowski S, Nguyen HS (2004) Int J Quantum Chem 100(6):834Google Scholar
  31. 31.
    Yuan KJ, Bandrauk AD (2017) Phys Chem Chem Phys 19(38):25846PubMedGoogle Scholar
  32. 32.
    Yuan KJ, Bandrauk AD (2018) J Phys Chem A 122(8):2241PubMedGoogle Scholar
  33. 33.
    Yuan K, Bandrauk AD (2019) J Phys Chem A 123(7):1328–1336PubMedGoogle Scholar
  34. 34.
    Kuleff AI, Cederbaum LS (2007) Chem Phys 338(2–3):320Google Scholar
  35. 35.
    Despré V, Marciniak A, Loriot V, Galbraith M, Rouzée A, Vrakking M, Lépine F, Kuleff A, Phys J (2015) Chem Lett 6(3):426Google Scholar
  36. 36.
    Vacher M, Steinberg L, Jenkins AJ, Bearpark MJ, Robb MA (2015) Phys Rev A 92(4):040502Google Scholar
  37. 37.
    Vacher M, Bearpark MJ, Robb MA, Malhado JP (2017) Phys Rev Lett 118(8):083001PubMedGoogle Scholar
  38. 38.
    Arnold C, Vendrell O, Santra R (2017) Phys Rev A 95(3):033425Google Scholar
  39. 39.
    Despré V, Golubev NV, Kuleff AI (2018) Phys Rev Lett 121(20):203002PubMedGoogle Scholar
  40. 40.
    Golubev NV, Despré V, Kuleff AI (2017) J Mod Opt 64(10–11):1031Google Scholar
  41. 41.
    Harriman A, Ziessel R (1996) Chem Commun 15:1707Google Scholar
  42. 42.
    Grosshenny V, Harriman A, Ziessel R (1996) Angew Chem Int Ed English 34(23–24):2705Google Scholar
  43. 43.
    James DK, Tour JM (2005) In: De Cola L (ed) Molecular wires and electronics. Springer, New York, pp 33–62Google Scholar
  44. 44.
    Schirmer J, Trofimov AB, Stelter G (1998) J Chem Phys 109(12):4734Google Scholar
  45. 45.
    Neto AC, Jorge F (2013) Chem Phys Lett 582:158Google Scholar
  46. 46.
    Stephens P, Devlin F, Chabalowski C, Frisch MJ (1994) J Phys Chem 98(45):11623Google Scholar
  47. 47.
    Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G et al (2009) Gaussian Inc, WallingfordGoogle Scholar
  48. 48.
    Cederbaum LS, Domcke W, Schirmer J, Niessen WV (1986) Adv Chem Phys 65:115–159Google Scholar
  49. 49.
    Breidbach J, Cederbaum LS (2003) J Chem Phys 118(9):3983Google Scholar
  50. 50.
    Kuleff AI (2018) In: Vrakking MJJ, Franck L (eds) Attosecond molecular dynamics. The Royal Society of Chemistry, London, pp 103–138Google Scholar
  51. 51.
    Kuleff AI, Breidbach J, Cederbaum LS (2005) J Chem Phys 123(4):044111PubMedGoogle Scholar
  52. 52.
    Lambert N, Chen YN, Cheng YC, Li CM, Chen GY, Nori F (2013) Nat Phys 9(1):10Google Scholar
  53. 53.
    Romero E, Augulis R, Novoderezhkin VI, Ferretti M, Thieme J, Zigmantas D, Van Grondelle R (2014) Nat Phys 10(9):676PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Theoretische Chemie, PCIUniversität HeidelbergHeidelbergGermany
  2. 2.ELI-ALPSSzegedHungary

Personalised recommendations