Theoretical Chemistry Accounts

, 138:112 | Cite as

On the impact of a phosphoryl group in the recognition capabilities of 2-aminopyridines toward carboxylic acids

  • Miguel Gallegos
  • Sara Gil-Guerrero
  • A. Fernández-Alarcón
  • Diego Bouzas-Ramos
  • Judith Martín
  • Carmen Concellón
  • Vicente del Amo
  • J. M. Costa
  • R. Mendoza-Meroño
  • S. García-Granda
  • Ángel Martín Pendás
  • Aurora CostalesEmail author
Regular Article
Part of the following topical collections:
  1. 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018)


Inspired by natural molecular recognition processes, many research efforts have been routed in recent years toward the design of new host–guest molecular systems based on non-covalent interactions. Within this field, 2-aminopyridines (2APs) have been widely studied due to their tunable spectroscopic response in the presence of carboxylic acids. Herein, we present and analyze a novel family of 2AP core compounds based on 2-phosphorylamidopyridine (2PAP). Linear response time-dependent density functional theory (TD-DFT) has been used to characterize and model several spectroscopic properties of 2PAP. Our results, validated through experiments, show that TD-DFT can provide a reliable description of the electronic excited states of these aromatic systems. In addition, we have also studied the amino–imino tautomerization of 2AP and 2PAP in light of TD-DFT tools. We show that the presence of a carboxylic acid has a catalytic effect on the tautomerization reaction, which otherwise does not occur spontaneously at room temperature. These results suggest that this low-cost computational approach can be applied to more complex organic systems derived from 2-aminopyridine, paving the way for the development of potentially useful sensing materials and organic species for molecular recognition.


Molecular recognition Amino–imino tautomerization Fluorescence 2-aminopyridines 



We acknowledge financial support form Spanish MINECO/FEDER, Grants CTQ2015-65790-P and CTQ2016-76829-R and Principado de Asturias Government Grant FC-GRUPIN-IDI/2018/000117. C. C. expresses her gratitude to MINECO for the award of “Ramón y Cajal” contract (RYC-2014-16021). AFA thanks CONACyT/México for his scholarship 436154. We also thank Dr. P. Braña for fruitful discussions.

Supplementary material

214_2019_2496_MOESM1_ESM.pdf (2 mb)
Supplementary material 1 (pdf 2086 KB)


  1. 1.
    Uhlenheuer D, Petkau K, Brunsveld L (2010) Chem Soc Rev 39(8):2817CrossRefGoogle Scholar
  2. 2.
    Hannon MJ (2007) Chem Soc Rev 36:280CrossRefGoogle Scholar
  3. 3.
    Dervan PB (2001) Biooorg. Med Chem 9:2215. CrossRefGoogle Scholar
  4. 4.
    Kruss S, Landry MP, Ende EV, Lima BM, Reuel NF, Zhang J, Nelson J, Mu B, Hilmer A, Strano M (2014) J Am Chem Soc 136(2):713CrossRefGoogle Scholar
  5. 5.
    Maness PF, Schachner M (2007) Nat Neurosci 10:19CrossRefGoogle Scholar
  6. 6.
    Zafar A, Gib SJ, Hamuro Y, Carr AJ, Hamilton AD (2000) Tetrahedron 56:8419CrossRefGoogle Scholar
  7. 7.
    Zhou J, Yu G, Huang F (2017) Chem Soc Rev 46:7021CrossRefGoogle Scholar
  8. 8.
    Yu G, Jie K, Huang F (2015) Chem Rev 115(15):7240CrossRefGoogle Scholar
  9. 9.
    Slater AG, Perdigão LMA, Beton PH, Champness NR (2014) Acc Chem Res 47(12):3417CrossRefGoogle Scholar
  10. 10.
    Leung M, Mandal AB, Wang CC, Lee GH, Peng SM, Cheng HL, Her GR, Chao I, Lu HF, Sun YC, Shiao MY, Chou PT (2002) J Am Chem Soc 16(124):4287CrossRefGoogle Scholar
  11. 11.
    Caballero NA, Meléndez FJ, Niño A, Muñoz-Caro C (2007) J Mol Model 13(5):579CrossRefGoogle Scholar
  12. 12.
    Schneider HJ (1994) Chem Soc Rev 23:227CrossRefGoogle Scholar
  13. 13.
    Kato Y, Conn MM, Rebek J (1995) Proc Natl Acad Sci USA 92(4):1208CrossRefGoogle Scholar
  14. 14.
    Perreault DM, Chen X, Anslyn EV (1995) Tetrahedron 51(2):353 Molecular RecognitionCrossRefGoogle Scholar
  15. 15.
    Mukherjee S, Majumdar S, Bhattacharyya D (2005) J Phys Chem B 109(20):10484CrossRefGoogle Scholar
  16. 16.
    Wickelgren I (2002) Science 297:178CrossRefGoogle Scholar
  17. 17.
    Weisstuch A, Testa AC (1968) J Phys Chem 72(6):1982CrossRefGoogle Scholar
  18. 18.
    Schultz T, Samoylova E, Radloff W, Hertel IV, Sobolewski AL, Domcke W (2004) Science 306:1765CrossRefGoogle Scholar
  19. 19.
    Wu R, Nachtigall P, Brutschy B (2004) Phys Chem Chem Phys 6:515CrossRefGoogle Scholar
  20. 20.
    Farmer JA, Campbell CT, Xu L, Henkelman G (2009) J Am Chem Soc 131(8):3098CrossRefGoogle Scholar
  21. 21.
    Rusakowicz R, Testa AC (1968) J Chem Phys 72(7):2680CrossRefGoogle Scholar
  22. 22.
    Londregan AT, Jennings S, Wei L (2010) Org Lett 12(22):5254CrossRefGoogle Scholar
  23. 23.
    Zhang F, Ai YJ, Luo Y, Fang WH (2009) J Chem Phys 130(14):144315CrossRefGoogle Scholar
  24. 24.
    Koner RR, Sinha S, Kumar S, Nandi CK, Ghosh S (2012) Tetrahedron Lett 53(18):2302CrossRefGoogle Scholar
  25. 25.
    Zengeya T, Gupta P, Rozners E (2012) Angew Chem Int Ed 51(50):12593CrossRefGoogle Scholar
  26. 26.
    Garcia-Tellado F, Goswami S, Chang SK, Geib SJ, Hamilton AD (1990) J Am Chem Soc 112(20):7393CrossRefGoogle Scholar
  27. 27.
    Vicent C, Fan E, Hamilton AD (1992) Tetrahedron Lett 33(30):4269CrossRefGoogle Scholar
  28. 28.
    Yang J, Fan E, Geib SJ, Hamilton AD (1993) J Am Chem Soc 115(12):5314CrossRefGoogle Scholar
  29. 29.
    Testa AC, Wild UP (1979) J Phys Chem 83(23):3044CrossRefGoogle Scholar
  30. 30.
    Vosko LWSH, Nusair M (1980) Can J Phys 58(8):1200CrossRefGoogle Scholar
  31. 31.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37(2):785CrossRefGoogle Scholar
  32. 32.
    Becke AD (1993) J Chem Phys 98(7):5648CrossRefGoogle Scholar
  33. 33.
    Dunning TH (1989) J Chem Phys 90(2):1007CrossRefGoogle Scholar
  34. 34.
    Ullrich CA (2011) Time-dependent density-functional theory: concepts and applications. OUP, OxfordCrossRefGoogle Scholar
  35. 35.
    Cramer CJ, Truhlar DG (1999) Chem Rev 99(8):2161CrossRefGoogle Scholar
  36. 36.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105(8):2999 PMID: 16092826CrossRefGoogle Scholar
  37. 37.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ã, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GaussianâĹij09 Revision E.01. Gaussian Inc., Wallingford, CTGoogle Scholar
  38. 38.
    Cammi R, Mennucci B (1999) J Chem Phys 110(20):9877CrossRefGoogle Scholar
  39. 39.
    Cossi M, Scalmani G, Rega N, Barone V (2001) J Chem Phys 114:5691CrossRefGoogle Scholar
  40. 40.
    Gustavsson T, Bánász A, Lazzarotto E, Markovitsi D, Scalmani G, Frisch MJ, Barone V, Improta R (2006) J Am Chem Soc 128(2):607CrossRefGoogle Scholar
  41. 41.
    Improta R, Barone V, Angew SF (2007) Chem Int Ed 46:405CrossRefGoogle Scholar
  42. 42.
    Rautela R, Joshi H, Joshi N, Tewari N, Pant S (2012) J Lumin 132(8):2151CrossRefGoogle Scholar
  43. 43.
    Khan MFS, Wu J, Liu B, Cheng C, Akbar M, Chai Y, Memon A, Soc R (2018) Open Sci 5(2):171719Google Scholar
  44. 44.
    Kasha M (1950) Faraday Discuss 9:14–19CrossRefGoogle Scholar
  45. 45.
    Inuzuka K, Fujimoto A (1990) Bull Chem Soc Jpn 63:971CrossRefGoogle Scholar
  46. 46.
    Konijnenberg J, Huizer AH, Varma CAGO (1989) J Chem Faraday Trans 85(9):1539CrossRefGoogle Scholar
  47. 47.
    Kitamura T, Hikita A, Ishikawa A, Fujimoto H (2005) Spectrochim Acta Part A 62:1157CrossRefGoogle Scholar
  48. 48.
    Chai S, Zhao GJ, Song P, Yang SQ, Liu JY, Han KL (2009) Phys Chem Chem Phys 11:4385CrossRefGoogle Scholar
  49. 49.
    Hung FT, Hu WP, Li TH, Cheng C, Pi-Tai C (2003) J Phys Chem A 107:3244CrossRefGoogle Scholar
  50. 50.
    Catalán J, del Valle JC, Kasha M (1999) Proc Natl Acad Sci 96:8338CrossRefGoogle Scholar
  51. 51.
    Douhal A, Guallar M, Moreno V, Lluch JM (1996) Chem Phys Lett 256:370CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Miguel Gallegos
    • 1
  • Sara Gil-Guerrero
    • 2
  • A. Fernández-Alarcón
    • 1
  • Diego Bouzas-Ramos
    • 1
  • Judith Martín
    • 3
  • Carmen Concellón
    • 3
  • Vicente del Amo
    • 3
  • J. M. Costa
    • 1
  • R. Mendoza-Meroño
    • 1
  • S. García-Granda
    • 1
  • Ángel Martín Pendás
    • 1
  • Aurora Costales
    • 1
    Email author
  1. 1.Department of Analytical and Physical ChemistryUniversity of OviedoOviedoSpain
  2. 2.Department of Physical ChemistryUniversity of VigoVigoSpain
  3. 3.Department of Inorganic and Organic ChemistryUniversity of OviedoOviedoSpain

Personalised recommendations