Advertisement

On the reductive hydrogenation process of gas-phase metal dioxides: H2 activation or reduction of the metal center, what is more important?

  • Patricio González-Navarrete
  • Monica CalatayudEmail author
Regular Article
  • 54 Downloads
Part of the following topical collections:
  1. 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018)

Abstract

A detailed CCSD(T)//B3LYP study is presented to unravel the gas-phase reductive hydrogenation process of dioxides MO2 (M = Si, Ti, Zr, Sn, Hf, Ir Ce) according to the following reaction MO2 + H2 → M(OH)2. For the reductive hydrogenation process, a heterolytic H–H bond cleavage is considered via hydride intermediates OMH(OH). A discussion concerning the effects of the reducibility of the metal centers and the structural aspects of the dioxides is presented. The results show that the activation of molecular hydrogen is directly related to the capability of the oxide to polarize the H2 molecule prior to the H–H bond cleavage, although the formation of hydride intermediates does not necessarily guarantee further reduction of the metal center. The activation of the reduction reaction to form M(OH)2 is found to be significantly larger than the activation to form the OMH(OH) intermediate. This gas-phase study aims to enhance the fundamental understanding of elementary steps in reductive hydrogenation processes of metal oxides.

Keywords

Reductive hydrogenation Metal dioxides Gas-phase H2 activation 

Notes

Acknowledgements

This work was performed using HPC resources from GENCI- CINES/IDRIS (Grants 2018- x2018082131, 2019- x2019082131) and the CCRE-DSI of Université P. M. Curie. The authors are grateful to Sorbonne Université for the PER-SU iDROGEN project.

Supplementary material

214_2019_2482_MOESM1_ESM.docx (29 kb)
Supplementary material 1 (DOCX 28 kb)

References

  1. 1.
    Li YW, Hou C, Jiang JX, Zhang ZH, Zhao CY, Page AJ, Ke ZF (2016) ACS Catal 6:1655–1662CrossRefGoogle Scholar
  2. 2.
    Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G (2007) Catal Today 120:246–256CrossRefGoogle Scholar
  3. 3.
    Hamilton CW, Baker RT, Staubitz A, Manners I (2009) Chem Soc Rev 38:279–293CrossRefGoogle Scholar
  4. 4.
    Clapham SE, Hadzovic A, Morris RH (2004) Coord Chem Rev 248:2201–2237CrossRefGoogle Scholar
  5. 5.
    Keaton RJ, Blacquiere JM, Baker RT (2007) J Am Chem Soc 129:1844–1845CrossRefGoogle Scholar
  6. 6.
    Sattler A, Parkin G (2011) J Am Chem Soc 133:3748–3751CrossRefGoogle Scholar
  7. 7.
    Suresh C, Santhanaraj D, Gurulakshmi M, Deepa G, Seivaraj M, Rekha NRS, Shanthi K (2012) ACS Catal 2:127–134CrossRefGoogle Scholar
  8. 8.
    Berke H (2010) ChemPhysChem 11:1837–1849PubMedGoogle Scholar
  9. 9.
    Kubas GJ (2009) J Organomet Chem 694:2648–2653CrossRefGoogle Scholar
  10. 10.
    Kubas GJ (2001) Metal-dihydrogen and σ-bond complexes: structure, theory, and reactivity. Kluwer Academic, New YorkGoogle Scholar
  11. 11.
    Gonzalez-Navarrete P, Calatayud M, Andres J, Ruiperez F, Roca-Sanjuan D (2013) J Phys Chem A 117:5354–5364CrossRefGoogle Scholar
  12. 12.
    Kubas GJ (2007) Chem Rev 107:4152–4205CrossRefGoogle Scholar
  13. 13.
    Nishimura S (2001) Handbook of heterogeneous catalytic hydrogenation for organic synthesis. Wiley, New YorkGoogle Scholar
  14. 14.
    Vries Jgd, Elsevier CJ (2007) The handbook of homogeneous hydrogenation. Wiley, Weinheim (Great Britain) Google Scholar
  15. 15.
    Centi G, Wichterlová B, Bell AT (2001) Catalysis by unique metal ion structures in solid matrices: from science to application. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  16. 16.
    Thomas JM, Thomas WJ (1997) Principles and practice of heterogeneous catalysis. VCH, WeinheimGoogle Scholar
  17. 17.
    Schlangen M, Schwarz H (2012) Catal Lett 142:1265–1278CrossRefGoogle Scholar
  18. 18.
    Bohme DK, Schwarz H (2005) Angew Chem Int Ed 44:2336–2354CrossRefGoogle Scholar
  19. 19.
    Vajda S, White MG (2015) ACS Catal 5:7152–7176CrossRefGoogle Scholar
  20. 20.
    Yin S, Bernstein ER (2014) Phys Chem Chem Phys 16:13900–13908CrossRefGoogle Scholar
  21. 21.
    Sun XY, Zhou SD, Schlangen M, Schwarz H (2016) Angew Chem Int Ed 55:13345–13348CrossRefGoogle Scholar
  22. 22.
    Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, revision D. 01. Gaussian Inc., WallingfordGoogle Scholar
  23. 23.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  24. 24.
    Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  25. 25.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305CrossRefGoogle Scholar
  26. 26.
    Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141CrossRefGoogle Scholar
  27. 27.
    Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563–2569CrossRefGoogle Scholar
  28. 28.
    Dolg M, Stoll H, Preuss H (1989) J Chem Phys 90:1730–1734CrossRefGoogle Scholar
  29. 29.
    Rappoport D, Furche F (2010) J Chem Phys 133:134105CrossRefGoogle Scholar
  30. 30.
    Syzgantseva OA, Calatayud M, Minot C (2012) J Phys Chem C 116:6636–6644CrossRefGoogle Scholar
  31. 31.
    Barteau MA (1996) Chem Rev 96:1413–1430CrossRefGoogle Scholar
  32. 32.
    Calatayud M, Markovits A, Menetrey M, Mguig B, Minot C (2003) Catal Today 85:125–143CrossRefGoogle Scholar
  33. 33.
    Matz O, Calatayud M (2018) ACS Omega 3:16063–16073CrossRefGoogle Scholar
  34. 34.
    Garcia-Melchor M, Lopez N (2014) J Phys Chem C 118:10921–10926CrossRefGoogle Scholar
  35. 35.
    Fernandez-Torre D, Carrasco J, Ganduglia-Pirovano MV, Perez R (2014) J Chem Phys 141:014703CrossRefGoogle Scholar
  36. 36.
    Vecchietti J, Baltanas MA, Gervais C, Collins SE, Blanco G, Matz O, Calatayud M, Bonivardi A (2017) J Catal 345:258–269CrossRefGoogle Scholar
  37. 37.
    Syzgantseva O, Calatayud M, Minot C (2011) Chem Phys Lett 503:12–17CrossRefGoogle Scholar
  38. 38.
    Helali Z, Jedidi A, Syzgantseva OA, Calatayud M, Minot C (2017) Theor Chem Acc 136:100CrossRefGoogle Scholar
  39. 39.
    Karvembu R, Prabhakaran R, Natarajan K (2005) Coord Chem Rev 249:911–918CrossRefGoogle Scholar
  40. 40.
    Blum Y, Czarkie D, Rahamim Y, Shvo Y (1985) Organometallics 4:1459–1461CrossRefGoogle Scholar
  41. 41.
    Kuzu I, Krummenacher I, Meyer J, Armbruster F, Breher F (2008) Dalton Tran 5836–5865Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Chimie Théorique (LCT)Sorbonne Université and CNRSParisFrance

Personalised recommendations