Skip to main content
Log in

On the reductive hydrogenation process of gas-phase metal dioxides: H2 activation or reduction of the metal center, what is more important?

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A detailed CCSD(T)//B3LYP study is presented to unravel the gas-phase reductive hydrogenation process of dioxides MO2 (M = Si, Ti, Zr, Sn, Hf, Ir Ce) according to the following reaction MO2 + H2 → M(OH)2. For the reductive hydrogenation process, a heterolytic H–H bond cleavage is considered via hydride intermediates OMH(OH). A discussion concerning the effects of the reducibility of the metal centers and the structural aspects of the dioxides is presented. The results show that the activation of molecular hydrogen is directly related to the capability of the oxide to polarize the H2 molecule prior to the H–H bond cleavage, although the formation of hydride intermediates does not necessarily guarantee further reduction of the metal center. The activation of the reduction reaction to form M(OH)2 is found to be significantly larger than the activation to form the OMH(OH) intermediate. This gas-phase study aims to enhance the fundamental understanding of elementary steps in reductive hydrogenation processes of metal oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li YW, Hou C, Jiang JX, Zhang ZH, Zhao CY, Page AJ, Ke ZF (2016) ACS Catal 6:1655–1662

    Article  CAS  Google Scholar 

  2. Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G (2007) Catal Today 120:246–256

    Article  CAS  Google Scholar 

  3. Hamilton CW, Baker RT, Staubitz A, Manners I (2009) Chem Soc Rev 38:279–293

    Article  CAS  Google Scholar 

  4. Clapham SE, Hadzovic A, Morris RH (2004) Coord Chem Rev 248:2201–2237

    Article  CAS  Google Scholar 

  5. Keaton RJ, Blacquiere JM, Baker RT (2007) J Am Chem Soc 129:1844–1845

    Article  CAS  Google Scholar 

  6. Sattler A, Parkin G (2011) J Am Chem Soc 133:3748–3751

    Article  CAS  Google Scholar 

  7. Suresh C, Santhanaraj D, Gurulakshmi M, Deepa G, Seivaraj M, Rekha NRS, Shanthi K (2012) ACS Catal 2:127–134

    Article  CAS  Google Scholar 

  8. Berke H (2010) ChemPhysChem 11:1837–1849

    CAS  PubMed  Google Scholar 

  9. Kubas GJ (2009) J Organomet Chem 694:2648–2653

    Article  CAS  Google Scholar 

  10. Kubas GJ (2001) Metal-dihydrogen and σ-bond complexes: structure, theory, and reactivity. Kluwer Academic, New York

    Google Scholar 

  11. Gonzalez-Navarrete P, Calatayud M, Andres J, Ruiperez F, Roca-Sanjuan D (2013) J Phys Chem A 117:5354–5364

    Article  CAS  Google Scholar 

  12. Kubas GJ (2007) Chem Rev 107:4152–4205

    Article  CAS  Google Scholar 

  13. Nishimura S (2001) Handbook of heterogeneous catalytic hydrogenation for organic synthesis. Wiley, New York

    Google Scholar 

  14. Vries Jgd, Elsevier CJ (2007) The handbook of homogeneous hydrogenation. Wiley, Weinheim (Great Britain)

    Google Scholar 

  15. Centi G, Wichterlová B, Bell AT (2001) Catalysis by unique metal ion structures in solid matrices: from science to application. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  16. Thomas JM, Thomas WJ (1997) Principles and practice of heterogeneous catalysis. VCH, Weinheim

    Google Scholar 

  17. Schlangen M, Schwarz H (2012) Catal Lett 142:1265–1278

    Article  CAS  Google Scholar 

  18. Bohme DK, Schwarz H (2005) Angew Chem Int Ed 44:2336–2354

    Article  Google Scholar 

  19. Vajda S, White MG (2015) ACS Catal 5:7152–7176

    Article  CAS  Google Scholar 

  20. Yin S, Bernstein ER (2014) Phys Chem Chem Phys 16:13900–13908

    Article  CAS  Google Scholar 

  21. Sun XY, Zhou SD, Schlangen M, Schwarz H (2016) Angew Chem Int Ed 55:13345–13348

    Article  CAS  Google Scholar 

  22. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, revision D. 01. Gaussian Inc., Wallingford

    Google Scholar 

  23. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  24. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  25. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  26. Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  27. Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563–2569

    Article  CAS  Google Scholar 

  28. Dolg M, Stoll H, Preuss H (1989) J Chem Phys 90:1730–1734

    Article  CAS  Google Scholar 

  29. Rappoport D, Furche F (2010) J Chem Phys 133:134105

    Article  Google Scholar 

  30. Syzgantseva OA, Calatayud M, Minot C (2012) J Phys Chem C 116:6636–6644

    Article  CAS  Google Scholar 

  31. Barteau MA (1996) Chem Rev 96:1413–1430

    Article  CAS  Google Scholar 

  32. Calatayud M, Markovits A, Menetrey M, Mguig B, Minot C (2003) Catal Today 85:125–143

    Article  CAS  Google Scholar 

  33. Matz O, Calatayud M (2018) ACS Omega 3:16063–16073

    Article  CAS  Google Scholar 

  34. Garcia-Melchor M, Lopez N (2014) J Phys Chem C 118:10921–10926

    Article  CAS  Google Scholar 

  35. Fernandez-Torre D, Carrasco J, Ganduglia-Pirovano MV, Perez R (2014) J Chem Phys 141:014703

    Article  Google Scholar 

  36. Vecchietti J, Baltanas MA, Gervais C, Collins SE, Blanco G, Matz O, Calatayud M, Bonivardi A (2017) J Catal 345:258–269

    Article  CAS  Google Scholar 

  37. Syzgantseva O, Calatayud M, Minot C (2011) Chem Phys Lett 503:12–17

    Article  CAS  Google Scholar 

  38. Helali Z, Jedidi A, Syzgantseva OA, Calatayud M, Minot C (2017) Theor Chem Acc 136:100

    Article  Google Scholar 

  39. Karvembu R, Prabhakaran R, Natarajan K (2005) Coord Chem Rev 249:911–918

    Article  CAS  Google Scholar 

  40. Blum Y, Czarkie D, Rahamim Y, Shvo Y (1985) Organometallics 4:1459–1461

    Article  CAS  Google Scholar 

  41. Kuzu I, Krummenacher I, Meyer J, Armbruster F, Breher F (2008) Dalton Tran 5836–5865

Download references

Acknowledgements

This work was performed using HPC resources from GENCI- CINES/IDRIS (Grants 2018- x2018082131, 2019- x2019082131) and the CCRE-DSI of Université P. M. Curie. The authors are grateful to Sorbonne Université for the PER-SU iDROGEN project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Calatayud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles derived from the 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Navarrete, P., Calatayud, M. On the reductive hydrogenation process of gas-phase metal dioxides: H2 activation or reduction of the metal center, what is more important?. Theor Chem Acc 138, 98 (2019). https://doi.org/10.1007/s00214-019-2482-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2482-6

Keywords

Navigation