Effects of complexation with a metal ion on the intramolecular hydrogen bonds in acylphloroglucinols

  • L. MamminoEmail author
Regular Article
Part of the following topical collections:
  1. 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018)


Complexation with a metal ion of an organic molecule containing one or more intramolecular hydrogen bonds (IHBs) influences the characteristics of the IHBs. These influences are here investigated computationally for the complexes of selected antioxidant acylphloroglucinols with a Cu2+ ion, and also the complexes of a number of structurally-related molecules meant to highlight the influence of specific molecular features. All the low energy conformers of acylphloroglucinols (compounds structurally derived from 1,3,5-trihydroxybenzene and characterised by the presence of a CRO group) contain an IHB between the sp2 O of CRO and a neighbouring phenol OH. Additional O–H···O or O–H···π IHB are present when the molecule contains substituents with groups that can form IHBs. The results show various effects that can be ascribed to complexation, such as changes in the IHB parameters and in the red shift of the vibrational frequency of the donor OH caused by the IHB. For O–H···O IHBs, complexation may cause the transfer of the proton from the donor to the acceptor O atom, more frequently when the acceptor is an sp2 O (i.e. for stronger IHBs). In some cases, IHBs that are not present in the uncomplexed conformers appear in the complex. The type and extent of the changes depend mainly on the site/s to which the Cu2+ ion binds and, to a less extent, also on the geometry features of the conformer. Some changes offer clear indications of weakening or strengthening of specific IHBs for specific binding sites of the ion.


Acylphloroglucinols Antioxidants Complexes of organic molecules with metal ions Effects of complexation on molecular properties Intramolecular hydrogen bonding 


Supplementary material

214_2019_2481_MOESM1_ESM.pdf (453 kb)
Supplementary material 1 (PDF 452 kb)
214_2019_2481_MOESM2_ESM.pdf (1.1 mb)
Supplementary material 2 (PDF 1148 kb)
214_2019_2481_MOESM3_ESM.pdf (635 kb)
Supplementary material 3 (PDF 635 kb)
214_2019_2481_MOESM4_ESM.pdf (745 kb)
Supplementary material 4 (PDF 745 kb)
214_2019_2481_MOESM5_ESM.pdf (467 kb)
Supplementary material 5 (PDF 467 kb)
214_2019_2481_MOESM6_ESM.pdf (1 mb)
Supplementary material 6 (PDF 1037 kb)
214_2019_2481_MOESM7_ESM.pdf (434 kb)
Supplementary material 7 (PDF 434 kb)
214_2019_2481_MOESM8_ESM.pdf (422 kb)
Supplementary material 8 (PDF 422 kb)
214_2019_2481_MOESM9_ESM.pdf (271 kb)
Supplementary material 9 (PDF 270 kb)
214_2019_2481_MOESM10_ESM.pdf (73 kb)
Supplementary material 10 (PDF 72 kb)
214_2019_2481_MOESM11_ESM.doc (692 kb)
Supplementary material 11 (DOC 692 kb)
214_2019_2481_MOESM12_ESM.doc (858 kb)
Supplementary material 12 (DOC 858 kb)
214_2019_2481_MOESM13_ESM.doc (414 kb)
Supplementary material 13 (DOC 414 kb)
214_2019_2481_MOESM14_ESM.doc (480 kb)
Supplementary material 14 (DOC 480 kb)
214_2019_2481_MOESM15_ESM.doc (140 kb)
Supplementary material 15 (DOC 140 kb)
214_2019_2481_MOESM16_ESM.doc (148 kb)
Supplementary material 16 (DOC 148 kb)
214_2019_2481_MOESM17_ESM.doc (142 kb)
Supplementary material 17 (DOC 142 kb)
214_2019_2481_MOESM18_ESM.doc (86 kb)
Supplementary material 18 (DOC 85 kb)
214_2019_2481_MOESM19_ESM.doc (360 kb)
Supplementary material 19 (DOC 359 kb)
214_2019_2481_MOESM20_ESM.doc (418 kb)
Supplementary material 20 (DOC 418 kb)
214_2019_2481_MOESM21_ESM.doc (398 kb)
Supplementary material 21 (DOC 398 kb)
214_2019_2481_MOESM22_ESM.doc (97 kb)
Supplementary material 22 (DOC 97 kb)
214_2019_2481_MOESM23_ESM.doc (118 kb)
Supplementary material 23 (DOC 118 kb)


  1. 1.
    Singh IP, Bharate SB (2006) Nat Prod Rep 23:558–591CrossRefGoogle Scholar
  2. 2.
    Peuchen S, Bolanos JP, Heales SJR, Almeida A, Duchen MR, Clark JB (1997) Progress Neurobiol 52:261–281CrossRefGoogle Scholar
  3. 3.
    Facchinetti F, Dawson VL, Dawson TM (1998) Cell Mol Neurobiol 18:667–677PubMedCrossRefGoogle Scholar
  4. 4.
    Verotta L (2003) Phytochem Rev 1:389–407CrossRefGoogle Scholar
  5. 5.
    Galano A, Mazzone G, Alvarez-Diduk R, Marino T, Alvarez-Idaboy JR, Russo N (2016) Annu Rev Food Sci Technol 7:335–352PubMedCrossRefGoogle Scholar
  6. 6.
    Leopoldini M, Prieto Pitarch I, Russo N, Toscano M (2004) J Phys Chem A 108:92–96CrossRefGoogle Scholar
  7. 7.
    Leopoldini M, Marino T, Russo N, Toscano M (2004) J Phys Chem A 108:4916–4922CrossRefGoogle Scholar
  8. 8.
    Leopoldini M, Marino T, Russo N, Toscano M (2004) Theor Chem Acc 111:210–216CrossRefGoogle Scholar
  9. 9.
    Leopoldini M, Russo N, Toscano M (2006) J Agric Food Chem 54:3078–3085PubMedCrossRefGoogle Scholar
  10. 10.
    Leopoldini M, Russo N, Toscano M (2007) J Agric Food Chem 55:7944–7949PubMedCrossRefGoogle Scholar
  11. 11.
    Chiodo SG, Leopoldini M, Russo N, Toscano M (2010) Phys Chem Chem Phys 12:7662–7670PubMedCrossRefGoogle Scholar
  12. 12.
    Leopoldini M, Russo N, Toscano M (2011) Food Chem 125:288–306CrossRefGoogle Scholar
  13. 13.
    Leopoldini M, Chiodo SG, Russo N, Toscano M (2011) J Chem Theory Comput 7:4218–4233PubMedCrossRefGoogle Scholar
  14. 14.
    Bentes ALA, Borges RS, Monteiro WR, de Macedo LGM, Alves CN (2011) Molecules 16:1749–1760PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Iuga C, Alvarez-Idaboy JR, Russo N (2012) J Org Chem 77:3868–3877PubMedCrossRefGoogle Scholar
  16. 16.
    Mazzone G, Malaj N, Galano A, Russo N, Toscano M (2015) RSC Adv 5:565–575CrossRefGoogle Scholar
  17. 17.
    Mammino L, Kabanda MM (2009) J Mol Struct (Theochem) 901:210–219CrossRefGoogle Scholar
  18. 18.
    Mammino L, Kabanda MM (2007) J Mol Struct (Theochem) 805:39–52CrossRefGoogle Scholar
  19. 19.
    Mammino L, Kabanda MM (2009) J Phys Chem A 113(52):15064–15077PubMedCrossRefGoogle Scholar
  20. 20.
    Mammino L, Kabanda MM (2012) Int J Quant Chem 112:2650–2658CrossRefGoogle Scholar
  21. 21.
    Kabanda MM, Mammino L (2012) Int J Quant Chem 112:3691–3702CrossRefGoogle Scholar
  22. 22.
    Mammino L, Kabanda MM (2013) Mol Simul 39(1):1–13CrossRefGoogle Scholar
  23. 23.
    Alagona G, Ghio C (2009) Phys Chem Chem Phys 11:776–790PubMedCrossRefGoogle Scholar
  24. 24.
    Alagona G, Ghio C (2009) J Phys Chem A 113:15206–15216PubMedCrossRefGoogle Scholar
  25. 25.
    Mammino L (2013) J Mol Model 19:2127–2142PubMedCrossRefGoogle Scholar
  26. 26.
  27. 27.
    Mammino L (2019) Adv Quant Chem 78:83–108Google Scholar
  28. 28.
    Mammino L (2019) Theor Chem Acc 138:15. CrossRefGoogle Scholar
  29. 29.
    Cabane B, Vuilleumier RCR (2005) Geoscience 337:159CrossRefGoogle Scholar
  30. 30.
    Loftsson T, Brewster ME (2008) Int J Pharm 354:248–254PubMedCrossRefGoogle Scholar
  31. 31.
    Nguyen HP, Seto NOL, Cai Y, Leinala EK, Borisova SN, Palcic MM, Evans SV (2003) J Biol Chem 278:49191–49195PubMedCrossRefGoogle Scholar
  32. 32.
    Song Y, Zhang W, Ji H, Zhou Y, Zhu J, Lu J (2001) Zhongguo Yaowu Huaxue Za zhi 11:311–316Google Scholar
  33. 33.
    Meng-Xia X, Yuan L (2002) Spectrochim Acta, Part A 58:2817–2826CrossRefGoogle Scholar
  34. 34.
    Schlucker S, Ranjan KS, Asthana BP, Popp J, Kiefer W (2001) J Phys Chem A 105:9983–9989CrossRefGoogle Scholar
  35. 35.
    Lee S, Na M, An R, Min B, Lee H (2003) Biol Pharm Bull 26:1354–1356PubMedCrossRefGoogle Scholar
  36. 36.
    Rezk BM, Haenen GRMM, van der Vijgh VJF, Bast A (2002) Biochem Biophys Res Commun 295:9–13PubMedCrossRefGoogle Scholar
  37. 37.
    Lee C, Yang W, Parr RG (1998) Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  38. 38.
    Becke AD (1993) J Chem Phys 98(2):1372–1377CrossRefGoogle Scholar
  39. 39.
    Becke AD (1993) J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  40. 40.
    Hay J, Wadt WR (1985) J Chem Phys 82(270):284–299Google Scholar
  41. 41.
    Siegbahn PEM (2003) Q Rev Biophys 36(1):91–145PubMedCrossRefGoogle Scholar
  42. 42.
    Siegbahn PE (2006) J Biol Inorg Chem 11(6):695–701PubMedCrossRefGoogle Scholar
  43. 43.
    Merrick JP, Moran D, Radom L (2007) J Phys Chem A 111:11683–11700PubMedCrossRefGoogle Scholar
  44. 44.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li MX, Hratchian HP, Izmaylov AF, Bloino J, Zheng GJ, Sonnenberg L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta J, Ogliaro, EF, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2003) GAUSSIAN 03, Revision D.01, Gaussian, Inc., Wallingford CT, 2010Google Scholar
  45. 45.
    GaussView 4.1., Gaussian, Inc., Wallingford CT, 2006Google Scholar
  46. 46.
    Chem3D Ultra, Version 8.03; CambridgeSoft, Inc.: Cambridge, MA, USA, 2003Google Scholar
  47. 47.
    Bakke JM, Bjerkeseth LH (1998) J Mol Struct 470:247–273CrossRefGoogle Scholar
  48. 48.
    Cubero E, Orozco M, Luque FJ (1999) Chem Phys Lett 310:445–450CrossRefGoogle Scholar
  49. 49.
    Kowski K, Lüttke W, Rademacher P (2001) J Mol Struct 567:231–249CrossRefGoogle Scholar
  50. 50.
    Rademacher P, Khelashvili L (2004) Mendeleev Commun 14:286–287CrossRefGoogle Scholar
  51. 51.
    Isozaki T, Tsutsumi Y-I, Suzuki T, Ichimura T (2010) Chem Phys Lett 495:175CrossRefGoogle Scholar
  52. 52.
    Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) J Am Chem Soc 111:1023–1028CrossRefGoogle Scholar
  53. 53.
    Bertolasi V, Gilli P, Ferretti V, Gilli G (1991) J Am Chem Soc 113:4017–4025CrossRefGoogle Scholar
  54. 54.
    Gilli P, Bertolasi V, Ferretti V, Gilli G (1994) J Am Chem Soc 116:909–915CrossRefGoogle Scholar
  55. 55.
    Simperler A, Lampert H, Mikenda W (1998) J Mol Struct 448:191–199CrossRefGoogle Scholar
  56. 56.
    Buemi G, Zuccarello F (2002) J Mol Struct (Theochem) 581:71–85CrossRefGoogle Scholar
  57. 57.
    Nolasco MM, Ribeiro-Claro PJA (2005) Chem Phys Chem 6:496–502PubMedCrossRefGoogle Scholar
  58. 58.
    Buemi G, Zuccarello F (2000) In: Pandalai SG (ed) Review on Recent Research Developments in Quantum Chemistry, vol. 1, Transworld Research Network, Trivandrum, India, pp 19–50Google Scholar
  59. 59.
    Osmialovski B, Kolehmainen E, Kowalska M (2012) J Org Chem 77(4):1653–1662CrossRefGoogle Scholar
  60. 60.
    Tehrani ZA, Jamshidi Z, JebeliJavan M, Fattahi A (2012) J Phys Chem A 116(17):4338–4347CrossRefGoogle Scholar
  61. 61.
    Khalil AS, Kelterer AM, Lavrich RJ (2017) J Phys Chem A 121(35):6646–6651PubMedCrossRefGoogle Scholar
  62. 62.
    Barone V, Adamo C (1996) J Chem Phys 105:11007–11019CrossRefGoogle Scholar
  63. 63.
    Bauer SH, Wilcox CF (1997) Chem Phys Lett 279:122–128CrossRefGoogle Scholar
  64. 64.
    Sadhunkhan S, Munoz D’Adamo C, Scuseria C (1999) ChemPhys Lett 306:84Google Scholar
  65. 65.
    Buemi G (2002) Chem Phys 277:241–256CrossRefGoogle Scholar
  66. 66.
    Sewell TD, Guo Y, Thompson DL (1995) J Chem Phys 103:8557–8565CrossRefGoogle Scholar
  67. 67.
    Smedarchina Z, Fernandez-Ramos A, Rios MA (1997) J Chem Phys 106:3956–3964CrossRefGoogle Scholar
  68. 68.
    Iftimie R, Schofield J (2001) J Chem Phys 115:5891–5902CrossRefGoogle Scholar
  69. 69.
    Tautermann CS, Voegele AF, Loerting T, Liedl KR (2002) J Chem Phys 117:1962–1966CrossRefGoogle Scholar
  70. 70.
    Aschi M, D’Abramo M, Ramondo F, Daidone I, D’Alessandro M, Di Nola A, Amadei A (2006) J Phys Org Chem 19:518–530CrossRefGoogle Scholar
  71. 71.
    Hammes-Schiffer S, Stuchebrukhov AA (2020) Chem Rev 110:6939–6960CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of VendaThohoyandouSouth Africa

Personalised recommendations