Skip to main content
Log in

Effects of complexation with a metal ion on the intramolecular hydrogen bonds in acylphloroglucinols

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Complexation with a metal ion of an organic molecule containing one or more intramolecular hydrogen bonds (IHBs) influences the characteristics of the IHBs. These influences are here investigated computationally for the complexes of selected antioxidant acylphloroglucinols with a Cu2+ ion, and also the complexes of a number of structurally-related molecules meant to highlight the influence of specific molecular features. All the low energy conformers of acylphloroglucinols (compounds structurally derived from 1,3,5-trihydroxybenzene and characterised by the presence of a CRO group) contain an IHB between the sp2 O of CRO and a neighbouring phenol OH. Additional O–H···O or O–H···π IHB are present when the molecule contains substituents with groups that can form IHBs. The results show various effects that can be ascribed to complexation, such as changes in the IHB parameters and in the red shift of the vibrational frequency of the donor OH caused by the IHB. For O–H···O IHBs, complexation may cause the transfer of the proton from the donor to the acceptor O atom, more frequently when the acceptor is an sp2 O (i.e. for stronger IHBs). In some cases, IHBs that are not present in the uncomplexed conformers appear in the complex. The type and extent of the changes depend mainly on the site/s to which the Cu2+ ion binds and, to a less extent, also on the geometry features of the conformer. Some changes offer clear indications of weakening or strengthening of specific IHBs for specific binding sites of the ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Singh IP, Bharate SB (2006) Nat Prod Rep 23:558–591

    Article  CAS  Google Scholar 

  2. Peuchen S, Bolanos JP, Heales SJR, Almeida A, Duchen MR, Clark JB (1997) Progress Neurobiol 52:261–281

    Article  CAS  Google Scholar 

  3. Facchinetti F, Dawson VL, Dawson TM (1998) Cell Mol Neurobiol 18:667–677

    Article  CAS  PubMed  Google Scholar 

  4. Verotta L (2003) Phytochem Rev 1:389–407

    Article  Google Scholar 

  5. Galano A, Mazzone G, Alvarez-Diduk R, Marino T, Alvarez-Idaboy JR, Russo N (2016) Annu Rev Food Sci Technol 7:335–352

    Article  CAS  PubMed  Google Scholar 

  6. Leopoldini M, Prieto Pitarch I, Russo N, Toscano M (2004) J Phys Chem A 108:92–96

    Article  CAS  Google Scholar 

  7. Leopoldini M, Marino T, Russo N, Toscano M (2004) J Phys Chem A 108:4916–4922

    Article  CAS  Google Scholar 

  8. Leopoldini M, Marino T, Russo N, Toscano M (2004) Theor Chem Acc 111:210–216

    Article  CAS  Google Scholar 

  9. Leopoldini M, Russo N, Toscano M (2006) J Agric Food Chem 54:3078–3085

    Article  CAS  PubMed  Google Scholar 

  10. Leopoldini M, Russo N, Toscano M (2007) J Agric Food Chem 55:7944–7949

    Article  CAS  PubMed  Google Scholar 

  11. Chiodo SG, Leopoldini M, Russo N, Toscano M (2010) Phys Chem Chem Phys 12:7662–7670

    Article  CAS  PubMed  Google Scholar 

  12. Leopoldini M, Russo N, Toscano M (2011) Food Chem 125:288–306

    Article  CAS  Google Scholar 

  13. Leopoldini M, Chiodo SG, Russo N, Toscano M (2011) J Chem Theory Comput 7:4218–4233

    Article  CAS  PubMed  Google Scholar 

  14. Bentes ALA, Borges RS, Monteiro WR, de Macedo LGM, Alves CN (2011) Molecules 16:1749–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iuga C, Alvarez-Idaboy JR, Russo N (2012) J Org Chem 77:3868–3877

    Article  CAS  PubMed  Google Scholar 

  16. Mazzone G, Malaj N, Galano A, Russo N, Toscano M (2015) RSC Adv 5:565–575

    Article  CAS  Google Scholar 

  17. Mammino L, Kabanda MM (2009) J Mol Struct (Theochem) 901:210–219

    Article  CAS  Google Scholar 

  18. Mammino L, Kabanda MM (2007) J Mol Struct (Theochem) 805:39–52

    Article  CAS  Google Scholar 

  19. Mammino L, Kabanda MM (2009) J Phys Chem A 113(52):15064–15077

    Article  CAS  PubMed  Google Scholar 

  20. Mammino L, Kabanda MM (2012) Int J Quant Chem 112:2650–2658

    Article  CAS  Google Scholar 

  21. Kabanda MM, Mammino L (2012) Int J Quant Chem 112:3691–3702

    Article  CAS  Google Scholar 

  22. Mammino L, Kabanda MM (2013) Mol Simul 39(1):1–13

    Article  CAS  Google Scholar 

  23. Alagona G, Ghio C (2009) Phys Chem Chem Phys 11:776–790

    Article  CAS  PubMed  Google Scholar 

  24. Alagona G, Ghio C (2009) J Phys Chem A 113:15206–15216

    Article  CAS  PubMed  Google Scholar 

  25. Mammino L (2013) J Mol Model 19:2127–2142

    Article  CAS  PubMed  Google Scholar 

  26. Mammino L (2017) J Mol Model. https://doi.org/10.1007/s00894-017-3443-4

    Article  PubMed  Google Scholar 

  27. Mammino L (2019) Adv Quant Chem 78:83–108

  28. Mammino L (2019) Theor Chem Acc 138:15. https://doi.org/10.1007/s00214-018-2381-2

    Article  CAS  Google Scholar 

  29. Cabane B, Vuilleumier RCR (2005) Geoscience 337:159

    Article  CAS  Google Scholar 

  30. Loftsson T, Brewster ME (2008) Int J Pharm 354:248–254

    Article  CAS  PubMed  Google Scholar 

  31. Nguyen HP, Seto NOL, Cai Y, Leinala EK, Borisova SN, Palcic MM, Evans SV (2003) J Biol Chem 278:49191–49195

    Article  CAS  PubMed  Google Scholar 

  32. Song Y, Zhang W, Ji H, Zhou Y, Zhu J, Lu J (2001) Zhongguo Yaowu Huaxue Za zhi 11:311–316

    CAS  Google Scholar 

  33. Meng-Xia X, Yuan L (2002) Spectrochim Acta, Part A 58:2817–2826

    Article  Google Scholar 

  34. Schlucker S, Ranjan KS, Asthana BP, Popp J, Kiefer W (2001) J Phys Chem A 105:9983–9989

    Article  Google Scholar 

  35. Lee S, Na M, An R, Min B, Lee H (2003) Biol Pharm Bull 26:1354–1356

    Article  CAS  PubMed  Google Scholar 

  36. Rezk BM, Haenen GRMM, van der Vijgh VJF, Bast A (2002) Biochem Biophys Res Commun 295:9–13

    Article  CAS  PubMed  Google Scholar 

  37. Lee C, Yang W, Parr RG (1998) Phys Rev B 37(2):785–789

    Article  Google Scholar 

  38. Becke AD (1993) J Chem Phys 98(2):1372–1377

    Article  CAS  Google Scholar 

  39. Becke AD (1993) J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  40. Hay J, Wadt WR (1985) J Chem Phys 82(270):284–299

    Google Scholar 

  41. Siegbahn PEM (2003) Q Rev Biophys 36(1):91–145

    Article  CAS  PubMed  Google Scholar 

  42. Siegbahn PE (2006) J Biol Inorg Chem 11(6):695–701

    Article  CAS  PubMed  Google Scholar 

  43. Merrick JP, Moran D, Radom L (2007) J Phys Chem A 111:11683–11700

    Article  CAS  PubMed  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li MX, Hratchian HP, Izmaylov AF, Bloino J, Zheng GJ, Sonnenberg L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta J, Ogliaro, EF, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2003) GAUSSIAN 03, Revision D.01, Gaussian, Inc., Wallingford CT, 2010

  45. GaussView 4.1., Gaussian, Inc., Wallingford CT, 2006

  46. Chem3D Ultra, Version 8.03; CambridgeSoft, Inc.: Cambridge, MA, USA, 2003

  47. Bakke JM, Bjerkeseth LH (1998) J Mol Struct 470:247–273

    Article  CAS  Google Scholar 

  48. Cubero E, Orozco M, Luque FJ (1999) Chem Phys Lett 310:445–450

    Article  CAS  Google Scholar 

  49. Kowski K, Lüttke W, Rademacher P (2001) J Mol Struct 567:231–249

    Article  Google Scholar 

  50. Rademacher P, Khelashvili L (2004) Mendeleev Commun 14:286–287

    Article  Google Scholar 

  51. Isozaki T, Tsutsumi Y-I, Suzuki T, Ichimura T (2010) Chem Phys Lett 495:175

    Article  CAS  Google Scholar 

  52. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) J Am Chem Soc 111:1023–1028

    Article  CAS  Google Scholar 

  53. Bertolasi V, Gilli P, Ferretti V, Gilli G (1991) J Am Chem Soc 113:4017–4025

    Article  Google Scholar 

  54. Gilli P, Bertolasi V, Ferretti V, Gilli G (1994) J Am Chem Soc 116:909–915

    Article  CAS  Google Scholar 

  55. Simperler A, Lampert H, Mikenda W (1998) J Mol Struct 448:191–199

    Article  CAS  Google Scholar 

  56. Buemi G, Zuccarello F (2002) J Mol Struct (Theochem) 581:71–85

    Article  CAS  Google Scholar 

  57. Nolasco MM, Ribeiro-Claro PJA (2005) Chem Phys Chem 6:496–502

    Article  CAS  PubMed  Google Scholar 

  58. Buemi G, Zuccarello F (2000) In: Pandalai SG (ed) Review on Recent Research Developments in Quantum Chemistry, vol. 1, Transworld Research Network, Trivandrum, India, pp 19–50

  59. Osmialovski B, Kolehmainen E, Kowalska M (2012) J Org Chem 77(4):1653–1662

    Article  Google Scholar 

  60. Tehrani ZA, Jamshidi Z, JebeliJavan M, Fattahi A (2012) J Phys Chem A 116(17):4338–4347

    Article  Google Scholar 

  61. Khalil AS, Kelterer AM, Lavrich RJ (2017) J Phys Chem A 121(35):6646–6651

    Article  CAS  PubMed  Google Scholar 

  62. Barone V, Adamo C (1996) J Chem Phys 105:11007–11019

    Article  CAS  Google Scholar 

  63. Bauer SH, Wilcox CF (1997) Chem Phys Lett 279:122–128

    Article  CAS  Google Scholar 

  64. Sadhunkhan S, Munoz D’Adamo C, Scuseria C (1999) ChemPhys Lett 306:84

    Google Scholar 

  65. Buemi G (2002) Chem Phys 277:241–256

    Article  CAS  Google Scholar 

  66. Sewell TD, Guo Y, Thompson DL (1995) J Chem Phys 103:8557–8565

    Article  CAS  Google Scholar 

  67. Smedarchina Z, Fernandez-Ramos A, Rios MA (1997) J Chem Phys 106:3956–3964

    Article  CAS  Google Scholar 

  68. Iftimie R, Schofield J (2001) J Chem Phys 115:5891–5902

    Article  CAS  Google Scholar 

  69. Tautermann CS, Voegele AF, Loerting T, Liedl KR (2002) J Chem Phys 117:1962–1966

    Article  CAS  Google Scholar 

  70. Aschi M, D’Abramo M, Ramondo F, Daidone I, D’Alessandro M, Di Nola A, Amadei A (2006) J Phys Org Chem 19:518–530

    Article  CAS  Google Scholar 

  71. Hammes-Schiffer S, Stuchebrukhov AA (2020) Chem Rev 110:6939–6960

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mammino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles derived from the 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 452 kb)

Supplementary material 2 (PDF 1148 kb)

Supplementary material 3 (PDF 635 kb)

Supplementary material 4 (PDF 745 kb)

Supplementary material 5 (PDF 467 kb)

Supplementary material 6 (PDF 1037 kb)

Supplementary material 7 (PDF 434 kb)

Supplementary material 8 (PDF 422 kb)

Supplementary material 9 (PDF 270 kb)

Supplementary material 10 (PDF 72 kb)

Supplementary material 11 (DOC 692 kb)

Supplementary material 12 (DOC 858 kb)

Supplementary material 13 (DOC 414 kb)

Supplementary material 14 (DOC 480 kb)

Supplementary material 15 (DOC 140 kb)

Supplementary material 16 (DOC 148 kb)

Supplementary material 17 (DOC 142 kb)

Supplementary material 18 (DOC 85 kb)

Supplementary material 19 (DOC 359 kb)

Supplementary material 20 (DOC 418 kb)

Supplementary material 21 (DOC 398 kb)

Supplementary material 22 (DOC 97 kb)

Supplementary material 23 (DOC 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mammino, L. Effects of complexation with a metal ion on the intramolecular hydrogen bonds in acylphloroglucinols. Theor Chem Acc 138, 103 (2019). https://doi.org/10.1007/s00214-019-2481-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2481-7

Keywords

Navigation