A density functional theory study on the [3 + 2] cycloaddition of N-(p-methylphenacyl)benzothiazolium ylide and 1-nitro-2-(p-methoxyphenyl) ethene: the formation of two diastereomeric adducts via two different mechanisms

  • Mousa SoleymaniEmail author
Regular Article


The [3 + 2] cycloaddition reaction of N-(p-methylphenacyl)benzothiazolium ylide (NBY) and 1-nitro-2-(p-methoxyphenyl) ethane (NME), experimentally investigated by Yan et al., was studied theoretically. They reported that the reaction proceeds via a stepwise mechanism and produces two diastereomeric adducts in a 4:1 ratio. For the study of the reaction, two regioselective attacks were considered between the reagents and their theoretical parameters were calculated. In excellent agreement with the experimental outcomes, the Fukui and Parr functions reactivity indices analysis as well as the energetic results indicated that among the two studied regioselective attacks, one which leads to the formation of two experimentally reported adducts, is more favorable than the other. The molecular mechanism of the studied reactions was characterized using the IRC, QTAIM and Wiberg bond indices analyses and the results suggested that two diastereomeric adducts are generated via two different mechanisms. The major adduct is produced via a two-stage one-step mechanism without the formation of any stable intermediate, whereas the minor one is generated through a stepwise mechanism along with the formation of a stable zwitterionic intermediate. The analysis of global electron density transfer showed that the reactions are polar and electron density fluxes from NBY toward NME. It was found from molecular electrostatic potential map that at the more favorable transition state, approach of reactants locates the oppositely charged regions over each other resulting in attractive forces between the two fragments. Analysis of the frontier molecular orbitals indicated that the HOMO orbital of NBY is also a frontier effective-for-reaction molecular orbital.


Tetrahydrobenzo[d]pyrrolo[2,1-b]thiazoles Stepwise mechanism Two-stage one-step mechanism DFT FERMO Molecular mechanism 



I am thankful to the Research Council and Office of Graduate Studies of the Ayatollah Boroujerdi University for their financial support.

Supplementary material

214_2019_2477_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1746 kb)


  1. 1.
    Carruthers W (1990) Cycloaddition reactions in organic synthesis. Pergamon, OxfordGoogle Scholar
  2. 2.
    Padwa A, Pearson WH (2002) Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural products. Wiley, New YorkCrossRefGoogle Scholar
  3. 3.
    Woodward RB, Hoffmann R (1965) J Am Chem Soc 87:395–397CrossRefGoogle Scholar
  4. 4.
    Dewar MJS, Olivella S, Stewart JJP (1986) J Am Chem Soc 108:5771–5779CrossRefGoogle Scholar
  5. 5.
    Houk KN, Gonza´lez J, Li Y (1995) Acc Chem Res 28:81–90CrossRefGoogle Scholar
  6. 6.
    Berski S, Andre´s J, Silvi B, Domingo LR (2006) J Phys Chem A 110:13939–13947CrossRefGoogle Scholar
  7. 7.
    Domingo LR, Sae´z JA, Zaragoza´ RJ, Arno M (2008) J Org Chem 73:8791–8799CrossRefGoogle Scholar
  8. 8.
    Soares MIL, Brito AF, Laranjo M, Paixão JA, Botelho MF, Pinho e Melo TMVD (2013) Eur J Med Chem 60:254–262CrossRefGoogle Scholar
  9. 9.
    Shen YM, Lv P-Ch, Zhang M-Zh, Xiao H-Q, Deng L-P, Zhu H-L, Qi Ch-Z (2011) Monatshe Chem Chem Mon 142:521–528CrossRefGoogle Scholar
  10. 10.
    Jin G, Sun J, Yang R-Y, Yan Ch-G (2017) Sci Rep 7:46470CrossRefGoogle Scholar
  11. 11.
    Shen G-L, Sun J, Yan Ch-G (2015) Org Biomol Chem 13:10929–10938CrossRefGoogle Scholar
  12. 12.
    Soleymani M (2018) Monatshe Chem Chem Mon 149:2183–2193CrossRefGoogle Scholar
  13. 13.
    Soleymani M (2019) Theoretical study on the [4+2] cycloaddition of 1,3-dimethylindole with 2,6-dimethylquinone. Struct Chem. CrossRefGoogle Scholar
  14. 14.
    Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620CrossRefGoogle Scholar
  15. 15.
    Zhao Y, Truhlar DG (2006) J Phys Chem 110:5121–5129CrossRefGoogle Scholar
  16. 16.
    Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001CrossRefGoogle Scholar
  17. 17.
    Schlegel HB (1982) J Comput Chem 3:214–218CrossRefGoogle Scholar
  18. 18.
    Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comput Chem 17:49–56CrossRefGoogle Scholar
  19. 19.
    Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161CrossRefGoogle Scholar
  20. 20.
    Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527CrossRefGoogle Scholar
  21. 21.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  22. 22.
    Carpenter JE, Weinhold FJ (1988) J Mol Struct 169:41–62CrossRefGoogle Scholar
  23. 23.
    Biegler-Konig F, Schonbohm J, Bayles D (2001) J Comp Chem 22:545–559CrossRefGoogle Scholar
  24. 24.
    Domingo LR, Perez P, Ortega DE (2013) J Org Chem 78:2462–2471CrossRefGoogle Scholar
  25. 25.
    Parr RG, Szentpaly LV, Liu S (1999) J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  26. 26.
    Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  27. 27.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlege HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr., Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision E.01. Gaussian, Inc., WallingfordGoogle Scholar
  29. 29.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874CrossRefGoogle Scholar
  30. 30.
    Ess DH, Jones GO, Houk KN (2006) Adv Synth Catal 348:2337–2361CrossRefGoogle Scholar
  31. 31.
    Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708–5711CrossRefGoogle Scholar
  32. 32.
    Domingo LR, Aurell MJ, Pêrez P, Contreras R (2002) J Phys Chem A 106:6871–6875CrossRefGoogle Scholar
  33. 33.
    Pêrez P, Domingo LR, Duque-Noreňa M, Chamorro E (2009) J Mol Struct THEOCHEM 895:86–91CrossRefGoogle Scholar
  34. 34.
    Domingo LR, Pérez P, Sáez JA (2013) RSC Adv 3:1486–1494CrossRefGoogle Scholar
  35. 35.
    Chamorro E, Pérez P, Domingo LR (2013) Chem Phys Lett 582:141–143CrossRefGoogle Scholar
  36. 36.
    Eyring H (1935) J Chem Phys 3:107–115CrossRefGoogle Scholar
  37. 37.
    Domingo LR (2014) RSC Adv 4:32415–32428CrossRefGoogle Scholar
  38. 38.
    Da Silva RR, Ramalho TC, Santos JM, Figueroa-Villar JD (2006) J Phys Chem A 110:1031–1040CrossRefGoogle Scholar
  39. 39.
    Espinosa E, Alkorta I, Elguero J, Molins E (2002) J Chem Phys 117:5529–5542CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceAyatollah Boroujerdi UniversityBoroujerdIran

Personalised recommendations