Electronic structure and adsorption geometry of Pt and Pd metal complexes with 1,3-dithiole-2-thione-4,5-dithiolate ligand on TiO2(101) surface from first-principles calculations

  • Lilian W. C. PaesEmail author
  • J. Amaya Suarez
  • A. M. Márquez
  • A. Gerson Bernardo da Cruz
  • Javier Fdez Sanz
Regular Article
Part of the following topical collections:
  1. 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018)


Metal complexes based on 1,3-dithiole-2-thione-4,5-dithiolate (dmit) ligand have been intensively studied for more than 40 years due to their unusual chemical and physical properties. Besides, the highly delocalized frontier orbitals, that allow direct electron transfer through the ligand π orbitals, make these class of complexes promising candidates for photochemical devices as well as sensitizer for dye-sensitized solar cells. In this work, we investigated the electronic and geometric properties of Pd and Pt (CH3)2[M(dmit)2] complexes isolated on TiO2(101) surface by means of first-principles calculations using plane-wave basis sets and DFT calculation. Adsorption energies of metal complexes supported on a TiO2(101) surface are calculated for three different configurations, linked by the sulfur atom of Sthione, Sthiole–Sthiolate, and planar. The studies found that the most stable adsorption molecular configuration mode for the palladium(II) and platinum(II) complexes is the planar mode. TD-DFT molecular calculations revealed that the lowest energy transition in the ultraviolet visible near-infrared range mainly corresponds to the HOMO–LUMO excitation for the (CH3)2[M(dmit)2] complexes. Theoretical calculations of optical absorption spectra of (CH3)2[M(dmit)2] complexes adsorbed on the anatase (101) surface show that the interaction induces a slightly redshift of electronic absorption bands. Density of states for the metal complexes/TiO2(101) system revealed that the LUMO of the metal complexes lies at below the edge of the TiO2 conduction band. The adsorption of the (CH3)2[Pd(dmit)2] complex on the anatase (101) surface results in the emergence of new transitions below 1 eV that can be ascribed to the presence of a favorable overlap between the LUMO of the complex and the conduction band of the TiO2 semiconductor.


Palladium and platinum complexes dmit ligand DFT TD-DFT Adsorption energy Sensitizer 



The first author would like to acknowledge fellowships granted by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq to fund her stay at the University of Seville. AMM, JAS, and JFS acknowledge support from Spanish MINECO under project CTQ2015-64669-P, Junta de Andalucía, Grant P12-FQM-1595, and European FEDER.


  1. 1.
    Gong J, Sumathy K, Qiao Q, Zhou Z (2017) Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew Sust Energy Rev 68:234–246CrossRefGoogle Scholar
  2. 2.
    Nazeeruddin MK, Baranoff E, Grätzel M (2011) Dye-sensitized solar cells: a brief overview. Sol Energy 85(6):1172–1178CrossRefGoogle Scholar
  3. 3.
    O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740CrossRefGoogle Scholar
  4. 4.
    Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44(20):6841–6851PubMedCrossRefGoogle Scholar
  5. 5.
    Diebold U (2003) Structure and properties of TiO2 surfaces: a brief review. Appl Phys A 76(5):681–687CrossRefGoogle Scholar
  6. 6.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663PubMedCrossRefGoogle Scholar
  7. 7.
    Lupan O, Guérin VM, Tiginyanu IM, Ursaki VV, Chow L, Heinrich H, Pauporté T (2010) Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells. J Photochem Photobiol, A 211(1):65–73CrossRefGoogle Scholar
  8. 8.
    Sakai N, Miyasaka T, Murakami TN (2013) Efficiency enhancement of ZnO-based dye-sensitized solar cells by low-temperature TiCl4 treatment and dye optimization. J Phys Chem C 117(21):10949–10956CrossRefGoogle Scholar
  9. 9.
    Quintana M, Edvinsson T, Hagfeldt A, Boschloo G (2007) Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime. J Phys Chem C 111(2):1035–1041CrossRefGoogle Scholar
  10. 10.
    Ferrere S, Zaban A, Gregg BA (1997) Dye sensitization of nanocrystalline tin oxide by perylene derivatives. J Phys Chem B 101(23):4490–4493CrossRefGoogle Scholar
  11. 11.
    Han D-W, Heo J-H, Kwak D-J, Han C-H, Sung Y-M (2009) Texture, morphology and photovoltaic characteristics of nanoporous F:SnO2 films. J Electr Eng Technol 4:93–97CrossRefGoogle Scholar
  12. 12.
    Niu H, Zhang S, Wang R, Guo Z, Shang X, Gan W, Qin S, Wan L, Xu J (2014) Dye-sensitized solar cells employing a multifunctionalized hierarchical SnO2 nanoflower structure passivated by TiO2 nanogranulum. J Phys Chem C 118(7):3504–3513CrossRefGoogle Scholar
  13. 13.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959PubMedCrossRefGoogle Scholar
  14. 14.
    Basheer B, Mathew D, George BK, Reghunadhan Nair CP (2014) An overview on the spectrum of sensitizers: the heart of dye sensitized solar cells. Sol Energy 108:479–507CrossRefGoogle Scholar
  15. 15.
    Capodilupo AL, Fabiano E, De Marco L, Ciccarella G, Gigli G, Martinelli C, Cardone A (2016) [1]Benzothieno[3,2-b]benzothiophene-based organic dyes for dye-sensitized solar cells. J Org Chem 81(8):3235–3245PubMedCrossRefGoogle Scholar
  16. 16.
    Sathyajothi S, Jayavel R, Dhanemozhi AC (2017) The fabrication of natural dye sensitized solar cell (Dssc) based on TiO2 using henna and beetroot dye extracts. Mater Today Proc 4(2, Part A):668–676CrossRefGoogle Scholar
  17. 17.
    Shalini S, Balasundaraprabhu R, Kumar TS, Prabavathy N, Senthilarasu S, Prasanna S (2016) Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): a review. Int J Energy Res 40(10):1303–1320CrossRefGoogle Scholar
  18. 18.
    Schmidt-Mende L, Bach U, Humphry-Baker R, Horiuchi T, Miura H, Ito S, Uchida S, Grätzel M (2005) Organic dye for highly efficient solid-state dye-sensitized solar cells. Adv Mater 17(7):813–815CrossRefGoogle Scholar
  19. 19.
    Lee C-P, Li C-T, Ho K-C (2017) Use of organic materials in dye-sensitized solar cells. Mater Today 20(5):267–283CrossRefGoogle Scholar
  20. 20.
    Sánchez-de-Armas R, San-Miguel MA, Oviedo J, Sanz JF (2012) Molecular modification of coumarin dyes for more efficient dye sensitized solar cells. J Chem Phys 136(19):194702PubMedCrossRefGoogle Scholar
  21. 21.
    Bessho T, Yoneda E, Yum J-H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin MK, Grätzel M (2009) New paradigm in molecular engineering of sensitizers for solar cell applications. J Am Chem Soc 131(16):5930–5934PubMedCrossRefGoogle Scholar
  22. 22.
    Ashraf S, Akhtar J, Siddiqi HM, El-Shafei A (2017) Thiocyanate-free ruthenium(ii) sensitizers with a bi-imidazole ligand in dye-sensitized solar cells (DSSCs). New J Chem 41(14):6272–6277CrossRefGoogle Scholar
  23. 23.
    Diwan K, Chauhan R, Singh SK, Singh B, Drew MGB, Bahadur L, Singh N (2014) Light harvesting properties of some new heteroleptic dithiocarbimate-diamine/diimine complexes of Ni, Pd and Pt studied as photosensitizer in dye-sensitized TiO2 solar cells. New J Chem 38(1):97–108CrossRefGoogle Scholar
  24. 24.
    Ferrere S (2002) New photosensitizers based upon [FeII(L)2(CN)2] and [FeIIL3], where L is substituted 2,2′-bipyridine. Inorg Chim Acta 329(1):79–92CrossRefGoogle Scholar
  25. 25.
    Linfoot CL, Richardson P, McCall KL, Durrant JR, Morandeira A, Robertson N (2011) A nickel-complex sensitiser for dye-sensitised solar cells. Sol Energy 85(6):1195–1203CrossRefGoogle Scholar
  26. 26.
    Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Md.Khaja N, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634PubMedCrossRefGoogle Scholar
  27. 27.
    Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Md.Khaja N, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634PubMedCrossRefGoogle Scholar
  28. 28.
    Cummings SD, Eisenberg R (1996) Tuning the excited-state properties of platinum(II) diimine dithiolate complexes. J Am Chem Soc 118(8):1949–1960CrossRefGoogle Scholar
  29. 29.
    Islam A, Sugihara H, Hara K, Singh LP, Katoh R, Yanagida M, Takahashi Y, Murata S, Arakawa H (2000) New platinum(II) polypyridyl photosensitizers for TiO2 solar cells. New J Chem 24(6):343–345CrossRefGoogle Scholar
  30. 30.
    Islam A, Sugihara H, Hara K, Singh LP, Katoh R, Yanagida M, Takahashi Y, Murata S, Arakawa H, Fujihashi G (2001) Dye Sensitization of nanocrystalline titanium dioxide with square planar platinum(II) diimine dithiolate complexes. Inorg Chem 40(21):5371–5380PubMedCrossRefGoogle Scholar
  31. 31.
    Geary EAM, Hirata N, Clifford J, Durrant JR, Parsons S, Dawson A, Yellowlees LJ, Robertson N (2003) Synthesis, structure and properties of [Pt(2,2′-bipyridyl-5,5′-dicarboxylic acid)(3,4-toluenedithiolate)]: tuning molecular properties for application in dye-sensitised solar cells. Dalton Trans 19:3757–3762CrossRefGoogle Scholar
  32. 32.
    Geary EAM, Yellowlees LJ, Jack LA, Oswald IDH, Parsons S, Hirata N, Durrant JR, Robertson N (2005) Synthesis, structure, and properties of [Pt(II)(diimine)(dithiolate)] Dyes with 3,3‘-, 4,4‘-, and 5,5‘-disubstituted bipyridyl: applications in dye-sensitized solar cells. Inorg Chem 44(2):242–250PubMedCrossRefGoogle Scholar
  33. 33.
    Geary EAM, McCall KL, Turner A, Murray PR, McInnes EJL, Jack LA, Yellowlees LJ, Robertson N (2008) Spectroscopic, electrochemical and computational study of Pt-diimine-dithiolene complexes: rationalising the properties of solar cell dyes. Dalton Trans 28:3701–3708CrossRefGoogle Scholar
  34. 34.
    Moorcraft LP, Morandeira A, Durrant JR, Jennings JR, Peter LM, Parsons S, Turner A, Yellowlees LJ, Robertson N (2008) Synthesis and properties of [Pt(4-CO2CH3-py)2(mnt)]: comparison of pyridyl and bipyridyl-based dyes for solar cells. Dalton Trans 48:6940–6947CrossRefGoogle Scholar
  35. 35.
    Moorcraft LP, Jack LA, Jennings JR, Peter LM, Yellowlees LJ, Robertson N (2009) Synthesis and properties of [Pt(4-CO2CH3-py)2(dmit)] and [Pt(4-NO2-py)2(mnt)]: exploring tunable Pt dyes. Polyhedron 28(18):4084–4090CrossRefGoogle Scholar
  36. 36.
    Lazarides T, McCormick TM, Wilson KC, Lee S, McCamant DW, Eisenberg R (2011) Sensitizing the Sensitizer: the synthesis and photophysical study of Bodipy–Pt(II)(diimine)(dithiolate) Conjugates. J Am Chem Soc 133(2):350–364PubMedCrossRefGoogle Scholar
  37. 37.
    Paes LWC, Suárez JA, Márquez AM, Sanz JF (2017) First-principles study of nickel complex with 1,3-dithiole-2-thione-4,5-dithiolate ligands as model photosensitizers. Theor Chem Acc 136(6):71CrossRefGoogle Scholar
  38. 38.
    da Cruz AGB, Wardell JL, Simão RA, Rocco AM (2007) Preparation, structure and electrochemistry of a polypyrrole hybrid film with [Pd(dmit)2]2–, bis(1,3-dithiole-2-thione-4,5-dithiolate)palladate(II). Electrochim Acta 52(5):1899–1909CrossRefGoogle Scholar
  39. 39.
    Bernardo da Cruz AG, Leyva ME, Simão RA (2018) A new low bandgap hybrid polymer film obtained by electropolymerization of 3,4-ethylenedioxythiophene with bis(1,3-dithiole-2-thione-4,5-dithiolate)platinate(II) dianion, PEDOT/[Pt(dmit)2]2−. J Solid State Electrochem 22(5):1459–1469CrossRefGoogle Scholar
  40. 40.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100CrossRefGoogle Scholar
  41. 41.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  42. 42.
    Stevens WJ, Basch H, Krauss M (1984) Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms. J Chem Phys 81(12):6026–6033CrossRefGoogle Scholar
  43. 43.
    Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms. Can J Chem 70(2):612–630CrossRefGoogle Scholar
  44. 44.
    Cundari TR, Stevens WJ (1993) Effective core potential methods for the lanthanides. J Chem Phys 98(7):5555–5565CrossRefGoogle Scholar
  45. 45.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1):51–57CrossRefGoogle Scholar
  46. 46.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.01. Wallingford CTGoogle Scholar
  47. 47.
    Centeno MÁ, Domínguez MI, Fernández Sanz J, Marquez AM, Odriozola JA, Plata JJ, Romero Sarria F, Sanchez Avellaneda R (2011) Gold nanoparticles on yttrium modified titania: support properties and catalytic activity. Top Catal 54(1):219–228Google Scholar
  48. 48.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558CrossRefGoogle Scholar
  49. 49.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRefGoogle Scholar
  50. 50.
    Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50CrossRefGoogle Scholar
  51. 51.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868PubMedCrossRefGoogle Scholar
  52. 52.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B 57(3):1505–1509CrossRefGoogle Scholar
  53. 53.
    Calzado CJ, Hernández NC, dez Sanz JF (2008) Effect of on-site Coulomb repulsion term U on the band-gap states of the reduced rutile (110) TiO2 surface. Phys Rev B 77(4):45118–45128CrossRefGoogle Scholar
  54. 54.
    Tang J-P, Wang L-L, Xiao W-Z, Li X-F (2013) First principles study on magnetic properties in ZnS doped with palladium. Eur Phys J B 86(8):362–367CrossRefGoogle Scholar
  55. 55.
    Lan G, Song J, Yang Z (2018) A linear response approach to determine Hubbard U and its application to evaluate properties of Y2B2O7, B = transition metals 3d, 4d and 5d. J Alloy Compd 749:909–925CrossRefGoogle Scholar
  56. 56.
    Plata JJ, Márquez AM, Sanz JF (2012) Communication: improving the density functional theory+U description of CeO2 by including the contribution of the O 2p electrons. J Chem Phys 136(4):041101. PubMedCrossRefGoogle Scholar
  57. 57.
    Tkatchenko A, Romaner L, Hofmann OT, Zojer E, Ambrosch-Draxl C, Scheffler M (2011) Van der Waals interactions between organic adsorbates and at organic/inorganic interfaces. MRS Bull 35(6):435–442. CrossRefGoogle Scholar
  58. 58.
    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F (2006) Linear optical properties in the projector-augmented wave methodology. Phys Rev B 73(4):045112. CrossRefGoogle Scholar
  59. 59.
    Ferreira GB, Hollauer E, Comerlato NM, Wardell JL (2006) An experimental and theoretical study of the electronic spectra of tetraethylammonium [bis(1,3-dithiole-2-thione-4,5-dithiolato)zincate(II)], [NEt4]2[Zn(dmit)2], and tetraethylammonium [bis(1,3-dithiole-2-one-4,5-dithiolato)zincate(II)], [NEt4]2[Zn(dmio)2]. Inorg Chim Acta 359(4):1239–1247CrossRefGoogle Scholar
  60. 60.
    Ferreira GB, Hollauer E, Comerlato NM, Wardell JL (2008) An experimental and theoretical study of the electronic spectra of tetraethylammonium [bis(1,3-dithiole-2-thione-4,5-dithiolato)M(III)] and tetraethylammonium [bis(1,3-dithiole-2-one-4,5-dithiolato)M(III)] (M = Sb or Bi). Spectrochim Acta Part A Mol Biomol Spectrosc 71(1):215–229CrossRefGoogle Scholar
  61. 61.
    Picciani PHS, Pavinatto FJ, Comerlato NM, Coutinho G, Oliveira ON (2012) Molecular organization and doping in poly(2-methoxyaniline)/Ni(dmit)2 films obtained with the Langmuir-Blodgett technique. RSC Adv 2(33):12835–12843CrossRefGoogle Scholar
  62. 62.
    Jia C, Ding J, Liu S-X, Labat G, Neels A, Hauser A, Decurtins S (2013) A Pt(II) complex with both a phenanthroline and a tetrathiafulvalene-extended dithiolate ligand: synthesis, crystal structure, electrochemical and spectroscopic properties. Polyhedron 55:87–91CrossRefGoogle Scholar
  63. 63.
    Pintus A, Aragoni MC, Bellec N, Devillanova FA, Lorcy D, Isaia F, Lippolis V, Randall RAM, Roisnel T, Slawin AMZ, Woollins JD, Arca M (2012) Structure-property relationships in PtII diimine-dithiolate nonlinear optical chromophores based on arylethylene-1,2-dithiolate and 2-thioxothiazoline-4,5-dithiolate. Eur J Inorg Chem 22:3577–3594CrossRefGoogle Scholar
  64. 64.
    Faulmann C, Errami A, Donnadieu B, Malfant I, Legros J-P, Cassoux P, Rovira C, Canadell E (1996) Metal complexes of dithiolate ligands: 5,6-dihydro-1,4-dithiin-2,3-dithiolato (dddt2-), 5,7-dihydro-1,4,6-trithiin-2,3-dithiolato (dtdt2-), and 2-thioxo-1,3-dithiole-4,5-dithiolato (dmit2-). Synthesis, electrochemical studies, crystal and electronic structures, and conducting properties. Inorg Chem 35(13):3856–3873PubMedCrossRefGoogle Scholar
  65. 65.
    Ferreira GB, Comerlato NM, Wardell JL, Hollauer E (2004) Vibrational spectra of bis(dmit) complexes of main group metals: IR, Raman and ab initio calculations. J Braz Chem Soc 15:951–963CrossRefGoogle Scholar
  66. 66.
    Singh JD, Singh HB (1993) Synthesis and characterization of [M(dmit)2]2− and [M(dmt)2]2− complexes (M = SeII or TeII; dmit = 4,5-dimercapto-1,3-dithiole-2-thione and dmt = 4,5-dimercapto-1,2-dithiole-3-thione). Polyhedron 12(23):2849–2856CrossRefGoogle Scholar
  67. 67.
    Liu G, Fang Q, Xu W, Chen H, Wang C (2004) Vibration assignment of carbon–sulfur bond in 2-thione-1,3-dithiole-4,5-dithiolate derivatives. Spectrochim Acta A Mol Biomol Spectrosc 60(3):541–550PubMedCrossRefGoogle Scholar
  68. 68.
    Bernardo da Cruz AG, Wardell JL, Rocco AM (2006) The decomposition kinetics of [Et4N]2[M(dmit)2] (M = Ni, Pd) in a nitrogen atmosphere using thermogravimetry. Thermochim Acta 443(2):217–224CrossRefGoogle Scholar
  69. 69.
    Tenderholt AL (2007) QMForge: a program to analyze quantum chemistry calculationsGoogle Scholar
  70. 70.
    Miyazaki T, Ohno T (1999) First-principles study of the electronic structure of the organic solids (CH3)4 N[M(dmit)2]2, (M = Ni and Pt): role of dimerization and the stability of the formation of a dimer. Phys Rev B 59(8):R5269–R5272CrossRefGoogle Scholar
  71. 71.
    Wang X-L, Wu M, Ding J, Li Z-S, Sun K-N (2014) Periodic density functional theory study on the interaction mode and mechanism of typical additives with TiO2 substrates for dye-sensitized solar cell applications. J Power Sources 246:10–18CrossRefGoogle Scholar
  72. 72.
    Nadler R, Sanz JF (2015) Effect of capping ligands and TiO2 supporting on the optical properties of a (CdSe)13 cluster. J Phys Chem A 119(7):1218–1227PubMedCrossRefGoogle Scholar
  73. 73.
    Suárez JA, Plata JJ, Márquez AM, Sanz JF (2016) Structural, electronic and optical properties of copper, silver and gold sulfide: a DFT study. Theor Chem Acc 135(3):70CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lilian W. C. Paes
    • 1
    Email author
  • J. Amaya Suarez
    • 2
  • A. M. Márquez
    • 2
  • A. Gerson Bernardo da Cruz
    • 3
  • Javier Fdez Sanz
    • 2
  1. 1.Departamento de Ciências ExatasEscola de Engenharia Industrial e Metalurgia de Volta RedondaVolta RedondaBrazil
  2. 2.Departamento de Química Física, Facultad de QuímicaUniversidad de SevillaSevilleSpain
  3. 3.Instituto de Química, Departamento de Química FundamentalUniversidade Federal Rural do Rio de JaneiroSeropedicaBrazil

Personalised recommendations