Molecular insights into the carbon dioxide–carboxylate anion interactions and implications for carbon capture

  • Walid Harb
  • Francesca Ingrosso
  • Manuel F. Ruiz-LópezEmail author
Regular Article
Part of the following topical collections:
  1. 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018)


In this work, we analyze the interaction of carbon dioxide with different carboxylate anion derivatives in the gas phase at the ab initio CCSD(T)//MP2 level using the aug-cc-pVTZ basis set. The systems considered here include the formate, acetate, propionate, bicarbonate, carbamate and glycinate anions. The study is relevant to get a better understanding of the interactions involved in novel carbon capture processes through either ionic liquids or amino acid salts. We describe the formation of covalent and non-covalent adducts and show that the formation energies are significantly larger than those previously reported for amines, which are used in conventional carbon capture processes. The nature of the interactions is analyzed using the natural bond orbitals methodology. The binding energy in the non-covalent processes does not depend much on the derivative, but covalent adducts display a rough correlation with nucleophilic/electrophilic indices provided distortion effects on the monomers are taken into account. In the case of glycinate, interactions with the amino and carboxylic moieties involve comparable energetics and the existence of several minima in the potential energy surface might be a factor contributing to the good CO2 capture capacity exhibited by this species in recent experimental studies.


Carbon capture Carbon dioxide Amino acids Carboxylate anion Ab initio Interaction energy Donor–acceptor interactions 



FI gratefully acknowledges the support from the EMERGENCE call of the Chemistry Institute of the CNRS (Project RéScMol). FI and MFRL are grateful to the French CINES (Project lct2550) for providing computational resources. WH is grateful for the IT department at USEK for technical aid to use HPC on Microsoft Azure platform and to AUF for supporting this work.


  1. 1.
  2. 2.
    Vitillo JG, Smit B, Gagliardi L (2017) Chem Rev 117:9521–9523CrossRefGoogle Scholar
  3. 3.
    Liu Q, Wu L, Jackstell R, Beller M (2015) Nat Commun 6:5933CrossRefGoogle Scholar
  4. 4.
    Rochelle GT (2009) Science 325:1652–1654CrossRefGoogle Scholar
  5. 5.
    Ramdin M, de Loos TW, Vlugt TJ (2012) Ind Eng Chem Res 51:8149–8177CrossRefGoogle Scholar
  6. 6.
    Aghaie M, Rezaei N, Zendehboudi S (2018) Renew Sustain Energy Rev 96:502–525CrossRefGoogle Scholar
  7. 7.
    Jutz F, Andanson J-M, Baiker A (2010) Chem Rev 111:322–353CrossRefGoogle Scholar
  8. 8.
    Jockenhövel T, Schneider R, Rode H (2009) Energy Proc 1:1043–1050CrossRefGoogle Scholar
  9. 9.
    Guo D, Thee H, Tan CY, Chen J, Fei W, Kentish S, Stevens GW, da Silva G (2013) Energy Fuels 27:3898–3904CrossRefGoogle Scholar
  10. 10.
    Zhang Z, Li Y, Zhang W, Wang J, Soltanian MR, Olabi AG (2018) Renew Sustain Energy Rev 98:179–188CrossRefGoogle Scholar
  11. 11.
    Hu G, Smith KH, Wu Y, Mumford KA, Kentish SE, Stevens GW (2018) Chin J Chem Eng Google Scholar
  12. 12.
    Shiflett MB, Yokozeki A (2008) J Chem Eng Data 54:108–114CrossRefGoogle Scholar
  13. 13.
    Carvalho PJ, Álvarez VH, Schröder B, Gil AM, Marrucho IM, Aznar M, Santos LM, Coutinho JA (2009) J Phys Chem B 113:6803–6812CrossRefGoogle Scholar
  14. 14.
    Barber PS, Griggs CS, Gurau G, Liu Z, Li S, Li Z, Lu X, Zhang S, Rogers RD (2013) Angew Chem Int Ed Engl 52:12350–12353CrossRefGoogle Scholar
  15. 15.
    Ma J, Zhou Z, Zhang F, Fang C, Wu Y, Zhang Z, Li A (2011) Environ Sci Technol 45:10627–10633CrossRefGoogle Scholar
  16. 16.
    Meredith JC, Johnston KP, Seminario JM, Kazarian SG, Eckert CA (1996) J Phys Chem 100:10837–10848CrossRefGoogle Scholar
  17. 17.
    Girard E, Tassaing T, Marty J-D, Destarac M (2016) Chem Rev 116:4125–4169CrossRefGoogle Scholar
  18. 18.
    Raveendran P, Wallen SL (2002) J Am Chem Soc 124:7274–7275CrossRefGoogle Scholar
  19. 19.
    Ingrosso F, Ruiz-Lopez MF (2018) J Phys Chem A 122:1764–1770CrossRefGoogle Scholar
  20. 20.
    Ingrosso F, Ruiz-Lopez MF (2017) ChemPhysChem 18:2560–2572CrossRefGoogle Scholar
  21. 21.
    San-Fabian E, Ingrosso F, Lambert A, Bernal-Uruchurtu MI, Ruiz-Lopez MF (2014) Chem Phys Lett 601:98–102CrossRefGoogle Scholar
  22. 22.
    Munoz-Losa A, Martins-Costa MTC, Ingrosso F, Ruiz-Lopez MF (2014) Mol Simul 40:154–159CrossRefGoogle Scholar
  23. 23.
    Azofra LM, Altarsha M, Ruiz-Lopez MF, Ingrosso F (2013) Theoret Chem Acc 132:1326CrossRefGoogle Scholar
  24. 24.
    Altarsha M, Ingrosso F, Ruiz-Lopez MF (2012) ChemPhysChem 13:3397–3403CrossRefGoogle Scholar
  25. 25.
    Trung NT, Nguyen MT (2013) Chem Phys Lett 581:10–15CrossRefGoogle Scholar
  26. 26.
    Kim N-S, Jeong S-K, Yoon S-H, Park G-S (2011) Bull Korean Chem Soc 32:4441–4443CrossRefGoogle Scholar
  27. 27.
    Shi W, Myers CR, Luebke DR, Steckel JA, Sorescu DC (2011) J Phys Chem B 116:283–295CrossRefGoogle Scholar
  28. 28.
    Shi W, Thompson RL, Albenze E, Steckel JA, Nulwala HB, Luebke DR (2014) J Phys Chem B 118:7383–7394CrossRefGoogle Scholar
  29. 29.
    Steckel JA (2012) J Phys Chem A 116:11643–11650CrossRefGoogle Scholar
  30. 30.
    Tian Q, Li R, Sun H, Xue Z, Mu T (2015) J Mol Liq 208:259–268CrossRefGoogle Scholar
  31. 31.
    Simon NM, Zanatta M, Neumann J, Girard AL, Marin G, Stassen H, Dupont J (2018) ChemPhysChem 19:2879–2884CrossRefGoogle Scholar
  32. 32.
    Hussain MA, Soujanya Y, Sastry GN (2011) Environ Sci Technol 45:8582–8588CrossRefGoogle Scholar
  33. 33.
    Kim N, Yoon S, Park G (2013) Tetrahedron 69:6693–6697CrossRefGoogle Scholar
  34. 34.
    Azofra LM (2015) Chem Phys 453:1–6CrossRefGoogle Scholar
  35. 35.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Gaussian 09. Gaussian Inc, WallingfordGoogle Scholar
  36. 36.
    Bartlett RJ (1989) J Phys Chem 93:1697–1708CrossRefGoogle Scholar
  37. 37.
    Moller C, Plesset MS (1934) Phys Rev 46:0618–0622CrossRefGoogle Scholar
  38. 38.
    Dunning THJ (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  39. 39.
    Lee TJ, Taylor PR (1989) Int J Quantum Chem 36:199–207CrossRefGoogle Scholar
  40. 40.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  41. 41.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  42. 42.
    Caldwell G, Renneboog R, Kebarle P (1989) Can J Chem 67:611–618CrossRefGoogle Scholar
  43. 43.
    O’Hair RAJ, Bowie JH, Gronert S (1992) Int J Mass Spectrom Ion Process 117:23–36CrossRefGoogle Scholar
  44. 44.
    Remko M, Smieško M, van Duijnen PT (2000) Mol Phys 98:709–714CrossRefGoogle Scholar
  45. 45.
    Chattaraj PK, Maiti B (2001) J Phys Chem A 105:169–183CrossRefGoogle Scholar
  46. 46.
    Domingo LR, Pérez P (2011) Org Biomol Chem 9:7168–7175CrossRefGoogle Scholar
  47. 47.
    Contreras R, Andres J, Safont V, Campodonico P, Santos J (2003) J Phys Chem A 107:5588–5593CrossRefGoogle Scholar
  48. 48.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874CrossRefGoogle Scholar
  49. 49.
    Leitzke A, Flyunt R, Theruvathu JA, von Sonntag C (2003) Org Biomol Chem 1:1012–1019CrossRefGoogle Scholar
  50. 50.
    Ingrosso F, Altarsha M, Dumarçay F, Kevern G, Barth D, Marsura A, Ruiz-López MF (2016) Chem Eur J 22:2972–2979CrossRefGoogle Scholar
  51. 51.
    Corradini D, Coudert FX, Vuilleumier R (2016) Nat Chem 8:454–460CrossRefGoogle Scholar
  52. 52.
    da Silva EF, Svendsen HF (2004) Ind Eng Chem Res 43:3413–3418CrossRefGoogle Scholar
  53. 53.
    Davran-Candan T (2014) J Phys Chem A 118:4582–4590CrossRefGoogle Scholar
  54. 54.
    Firaha DS, Kirchner B (2016) Chemsuschem 9:1591–1599CrossRefGoogle Scholar
  55. 55.
    Yang X, Rees RJ, Conway W, Puxty G, Yang Q, Winkler DA (2017) Chem Rev 117:9524–9593CrossRefGoogle Scholar
  56. 56.
    Orestes E, Ronconi CM, de Mesquita Carneiro JW (2014) Phys Chem Chem Phys 16:17213–17219CrossRefGoogle Scholar
  57. 57.
    Siggel MRF, Thomas TD (1992) J Am Chem Soc 114:5795–5800CrossRefGoogle Scholar
  58. 58.
    Kumar P, Hogendoorn J, Versteeg G, Feron P (2003) AIChE J 49:203–213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Walid Harb
    • 1
  • Francesca Ingrosso
    • 2
  • Manuel F. Ruiz-López
    • 2
    Email author
  1. 1.Faculty of SciencesHoly Spirit University of KaslikJouniehLebanon
  2. 2.Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, CNRSUniversity of LorraineVandoeuvre-lès-NancyFrance

Personalised recommendations