Ab initio investigation of cationic water cluster (H2O) +13 via particle swarm optimization algorithm


The configurations of cationic water cluster (H2O) +13 have been explored through the particle swarm optimization algorithm conjunct with computational quantum chemistry approaches. Geometry optimization and vibrational analysis for the 15 possible low-lying clusters were calculated at the MPW1K/6–31++G** level as well as infrared spectrum calculation. Through various hybrid exchange–correlation functionals of density functional theory in combination with zero-point vibrational energies correction, we can definitely get the relative stable configurations and discuss the effect on the relative energy order of these clusters caused by different functionals in detail. Given the effect of temperature, it is found that as the temperature rises, the configuration with irregular shape will become more stable. By analyzing the infrared spectra, the structure and vibration analysis of these clusters are studied in detail. Based on topological analysis, we study the relationship between structural characteristics and the bonding strengths, and analyze the strength of hydrogen bonding at the bond critical points.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Akiya N, Savage PE (2002) Roles of water for chemical reactions in high-temperature water. Chem Rev 102:2725–2750

    CAS  Article  Google Scholar 

  2. 2.

    Hammond JR, Govind N, Kowalski K, Autschbach J, Xantheas SS (2009) Accurate dipole polarizabilities for water clusters n = 2–12 at the coupled-cluster level of theory and benchmarking of various density functionals. J Chem Phys 131:214103

    Article  Google Scholar 

  3. 3.

    James T, Wales DJ, Hernández-Rojas J (2005) Global minima for water clusters (H2O)(n), n ≤ 21, described by a five-site empirical potential. Chem Phys Lett 415:302–307

    CAS  Article  Google Scholar 

  4. 4.

    Liu XJ, Lu WC, Wang CZ, Ho KM (2011) Energetic and fragmentation stability of water clusters (H2O)(n), n = 2–30. Chem Phys Lett 508:270–275

    CAS  Article  Google Scholar 

  5. 5.

    Wiggins PM (1990) Role of water in some biological processes. Microbiol Rev 54:432–449

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Kang D, Dai J, Hou Y, Yuan J (2010) Structure and vibrational spectra of small water clusters from first principles simulations. J Chem Phys 133:014302

    Article  Google Scholar 

  7. 7.

    Pérez C, Pate BH (2012) Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy. Science 336:897–901

    Article  Google Scholar 

  8. 8.

    Wang Y, Babin V, Bowman JM, Paesani F (2012) The water hexamer: cage, prism, or both. Full dimensional quantum simulations say both. J Am Chem Soc 134:11116–11119

    CAS  Article  Google Scholar 

  9. 9.

    Cheng QY, Evangelista FA, Simmonett AC, Yamaguchi Y, Schaefer HF (2009) Water dimer radical cation: structures, vibrational frequencies, and energetics. J Phys Chem A 113:13779–13789

    CAS  Article  Google Scholar 

  10. 10.

    Jongma RT, Huang YH, Shi SM, Wodtke AM (1998) Rapid evaporative cooling suppresses fragmentation in mass spectrometry: Synthesis of “Unprotonated” water cluster ions. J Phys Chem A 102:8847–8854

    CAS  Article  Google Scholar 

  11. 11.

    Periyasamy G, Levine RD, Remacle F (2009) Electronic wave packet motion in water dimer cation: a many electron description. Chem Phys 366:129–138

    CAS  Article  Google Scholar 

  12. 12.

    Barnett SM, Goldberg KI, Mayer JM (2012) A soluble copper-bipyridine water-oxidation electrocatalyst. Nat Chem 4:498–502

    CAS  Article  Google Scholar 

  13. 13.

    Gagliardi CJ, Vannucci AK, Concepcion JJ, Chen ZF, Meyer TJ (2012) The role of proton coupled electron transfer in water oxidation. Energy Environ Sci 5:7704–7717

    CAS  Article  Google Scholar 

  14. 14.

    Moonshiram D, Jurss JW, Concepcion JJ, Zakharova T, Alperovich I, Meyer TJ, Pushkar Y (2012) Structure and electronic configurations of the intermediates of water oxidation in blue ruthenium dimer catalysis. J Am Chem Soc 134:4625–4636

    CAS  Article  Google Scholar 

  15. 15.

    Sundstrom EJ, Yang XZ, Thoi VS, Karunadasa HI, Chang CJ, Long JR, Head-Gordon M (2012) Computational and experimental study of the mechanism of hydrogen generation from water by a molecular molybdenum-oxo electrocatalyst. J Am Chem Soc 134:5233–5242

    CAS  Article  Google Scholar 

  16. 16.

    Herr JD, Steele RP (2016) Ion–radical pair separation in larger oxidized water clusters, (H2O)(+) n = 6–21. J Phys Chem A 120:7225–7239

    CAS  Article  Google Scholar 

  17. 17.

    Bednarek J, Plonka A, Hallbrucker A, Mayer E (1998) Radiation yield of oxygen-based radicals in hyperquenched glassy water gamma-irradiated at 77 K. Radiat Phys Chem 53:635–638

    CAS  Article  Google Scholar 

  18. 18.

    Shinohara H, Nishi N, Washida N (1986) Photoionization of water clusters at 11.83 Ev—observation of unprotonated cluster ions (H2O) + n (2 ≤ n ≤ 10). J Chem Phys 84:5561–5567

    CAS  Article  Google Scholar 

  19. 19.

    Brommer M, Weis B, Follmeg B, Rosmus P, Carter S, Handy NC, Werner HJ, Knowles PJ (1993) Theoretical spin–rovibronic 2A1(πu)–2B1 spectrum of the H2O+, HDO+, and D2O+ cations. J Chem Phys 98:5222–5234

    CAS  Article  Google Scholar 

  20. 20.

    Eroms M, Jungen M, Meyer HD (2010) Nonadiabatic nuclear dynamics after valence ionization of H2O. J Phys Chem A 114:9893–9901

    CAS  Article  Google Scholar 

  21. 21.

    Roth D, Dopfer O, Maier JP (2001) Intermolecular potential energy surface of the proton-bound H2O + -He dimer: Ab initio calculations and IR spectra of the O–H stretch vibrations. Phys Chem Chem Phys 3:2400–2410

    CAS  Article  Google Scholar 

  22. 22.

    Do H, Besley NA (2013) Proton transfer or hemibonding? The structure and stability of radical cation clusters. Phys Chem Chem Phys 15:16214–16219

    CAS  Article  Google Scholar 

  23. 23.

    Lee HM, Kim KS (2013) Water dimer cation: density functional theory vs. ab initio theory. J Comput Chem 34:1589–1597

    CAS  Article  Google Scholar 

  24. 24.

    Pieniazek PA, VandeVondele J, Jungwirth P, Krylov AI, Bradforth SE (2008) Degree of initial hole localization/delocalization in ionized water clusters. J Phys Chem A 112:6159–6170

    CAS  Article  Google Scholar 

  25. 25.

    Tsai M-K, Kuo J-L, Lu J-M (2012) The dynamics and spectroscopic fingerprint of hydroxyl radical generation through water dimer ionization: ab initio molecular dynamic simulation study. Phys Chem Chem Phys 14:13402–13408

    CAS  Article  Google Scholar 

  26. 26.

    McCoy AB, Diken EG, Johnson MA (2009) Spectroscopic study of the ion–radical H-bond in H4O2 +. J Phys Chem A 113:7346–7352

    CAS  Article  Google Scholar 

  27. 27.

    Lee HM, Kim KS (2009) Water dimer cation: density functional theory vs. ab initio theory. J Chem Theory Comput 5:976–981

    CAS  Article  Google Scholar 

  28. 28.

    Herr JD, Talbot J, Steele RP (2015) Structural progression in clusters of ionized water, (H2O)(n = 1–5)(+). J Phys Chem A 119:752–766

    CAS  Article  Google Scholar 

  29. 29.

    Kamarchik E, Kostko O, Bowman JM, Ahmed M, Krylov AI (2010) Spectroscopic signatures of proton transfer dynamics in the water dimer cation. J Chem Phys 132:194311

    Article  Google Scholar 

  30. 30.

    Stillinger FH (1999) Exponential multiplicity of inherent structures. Phys Rev E 59:48–51

    CAS  Article  Google Scholar 

  31. 31.

    Wales DJ, Doye JPK (2003) Stationary points and dynamics in high-dimensional systems. J Chem Phys 119:12409–12416

    CAS  Article  Google Scholar 

  32. 32.

    Mizuse K, Fujii A (2013) Characterization of a solvent-separated ion–radical pair in cationized water networks: infrared photodissociation and Ar-attachment experiments for water cluster radical cations (H2O)(n)(+) (n = 3–8). J Phys Chem A 117:929–938

    CAS  Article  Google Scholar 

  33. 33.

    Mizuse K, Fujii A (2011) Structural trends of ionized water networks: infrared spectroscopy of water cluster radical cations (H2O)(n)(+) (n = 3–11). Phys Chem Chem Phys 13:7129–7135

    CAS  Article  Google Scholar 

  34. 34.

    Do H, Besley NA (2013) Structure and bonding in ionized water clusters. J Phys Chem A 117:5385–5391

    CAS  Article  Google Scholar 

  35. 35.

    Lu E-P, Pan P-R, Li Y-C, Tsai M-K, Kuo J-L (2014) Structural evolution and solvation of the OH radical in ionized water radical cations (H2O)(n)(+), n = 5–8. Phys Chem Chem Phys 16:18888–18895

    CAS  Article  Google Scholar 

  36. 36.

    Lv ZL, Xu K, Cheng Y, Chen XR, Cai LC (2014) Ab initio investigation of the lower energy candidate structures for (H2O) +(5) water cluster. J Chem Phys 141:054309

    Article  Google Scholar 

  37. 37.

    Shi R, Huang X, Su Y, Lu H-G, Li S-D, Tang L, Zhao J (2017) Which density functional should be used to describe protonated water clusters? J Phys Chem A 121:3117–3127

    CAS  Article  Google Scholar 

  38. 38.

    Shi RL, Li KY, Su Y, Tang LL, Huang XM, Sai LW, Zhao JJ (2018) Revisit the landscape of protonated water clusters H+(H2O)n with n = 10–17: an ab initio global search. J Chem Phys 148:174305

    Article  Google Scholar 

  39. 39.

    Wang Y, Lv J, Zhu L, Ma Y (2010) Crystal structure prediction via particle-swarm optimization. Phys Rev B 82:094116

    Article  Google Scholar 

  40. 40.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell RW, Burant J, Iyengar S, Tomasi J, Cossi M, Rega N, Millam J, Klene M, Knox J, Cross J, Bakken V, Adamo C, Jaramillo-Merchan J, Gomperts R, Stratmann K, Yazyev O, Austin A, Cammi R, Pomelli C, Ochterski J, Martin R, Morokuma K, Zakrzewski V, Voth G, Salvador P, Dannenberg J, Dapprich S, Daniels A, Farkas O, Foresman J, Ortiz J, Cioslowski J, Fox D, R. A. (2009) Gaussian 09. Gaussian Inc., Wallingford

    Google Scholar 

  41. 41.

    Lv J, Wang YC, Zhu L, Ma YM (2012) Particle-swarm structure prediction on clusters. J Chem Phys 137:084104

    Article  Google Scholar 

  42. 42.

    Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108:664–675

    CAS  Article  Google Scholar 

  43. 43.

    Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) Adiabatic connection for kinetics. J Phys Chem A 104:4811–4815

    CAS  Article  Google Scholar 

  44. 44.

    Bally T, Sastry GN (1997) Incorrect dissociation behavior of radical ions in density functional calculations. J Phys Chem A 101:7923–7925

    CAS  Article  Google Scholar 

  45. 45.

    Sodupe M, Bertran J, Rodriguez-Santiago L, Baerends EJ (1999) Ground state of the (H2O)(2)(+) radical cation: DFT versus post-Hartree–Fock methods. J Phys Chem A 103:166–170

    CAS  Article  Google Scholar 

  46. 46.

    Zhang YK, Yang WT (1998) A challenge for density functionals: self-interaction error increases for systems with a noninteger number of electrons. J Chem Phys 109:2604–2608

    CAS  Article  Google Scholar 

  47. 47.

    Jordan KD, Wang F (2003) Theory of dipole-bound anions. Annu Rev Phys Chem 54:367–396

    CAS  Article  Google Scholar 

  48. 48.

    Fournier JA, Wolke CT, Johnson MA, Odbadrakh TT, Jordan KD, Kathmann SM, Xantheas SS (2015) Snapshots of proton accommodation at a microscopic water surface: understanding the vibrational spectral signatures of the charge defect in cryogenically cooled H+(H2O)(n = 2–28) clusters. J Phys Chem A 119:9425–9440

    CAS  Article  Google Scholar 

  49. 49.

    Jiang J-C, Wang Y-S, Chang H-C, Lin SH, Lee YT, Niedner-Schatteburg G, Chang H-C (2000) Infrared spectra of H + (H2O)(5–8) clusters: evidence for symmetric proton hydration. J Am Chem Soc 122:1398–1410

    CAS  Article  Google Scholar 

  50. 50.

    Vendrell O, Gatti F, Meyer H-D (2007) Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. II. Infrared spectrum and vibrational dynamics. J Chem Phys 127:184303

    Article  Google Scholar 

  51. 51.

    Lee HM, Kim KS (2011) Water trimer cation. Theor Chem Acc 130:543–548

    CAS  Article  Google Scholar 

  52. 52.

    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  53. 53.

    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    CAS  Article  Google Scholar 

  54. 54.

    Liu L, Hu CE, Tang M, Chen XR, Cai LC (2016) Ab initio investigation of structure, stability, thermal behavior, bonding, and infrared spectra of ionized water cluster (H2O) +(6) . J Chem Phys 145:154307

    Article  Google Scholar 

  55. 55.

    Lv ZL, Cheng Y, Chen XR, Cai LC (2015) Structural exploration and properties of (H2O) +(4) cluster via ab initio in combination with particle swarm optimization method. Chem Phys 452:25–30

    CAS  Article  Google Scholar 

  56. 56.

    Singh NJ, Park M, Min SK, Suh SB, Kim KS (2006) Magic and antimagic protonated water clusters: exotic structures with unusual dynamic effects. Angew Chem Int Ed 45:3795–3800

    CAS  Article  Google Scholar 

  57. 57.

    Miyazaki M, Fujii A, Ebata T, Mikami N (2004) Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages. Science 304:1134–1137

    CAS  Article  Google Scholar 

  58. 58.

    Devereux M, Popelier PL (2007) The effects of hydrogen-bonding environment on the polarization and electronic properties of water molecules. J Phys Chem A 111:1536–1544

    CAS  Article  Google Scholar 

  59. 59.

    Headrick JM, Diken EG, Walters RS, Hammer NI, Christie RA, Cui J, Myshakin EM, Duncan MA, Johnson MA, Jordan KD (2005) Spectral signatures of hydrated proton vibrations in water clusters. Science 308:1765–1769

    CAS  Article  Google Scholar 

  60. 60.

    Roscioli JR, McCunn LR, Johnson MA (2007) Quantum structure of the intermolecular proton bond. Science 316:249–254

    CAS  Article  Google Scholar 

  61. 61.

    Cohen AJ, Mori-Sánchez P, Yang W (2008) Insights into current limitations of density functional theory. Science 321:792–794

    CAS  Article  Google Scholar 

  62. 62.

    Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    CAS  Article  Google Scholar 

  63. 63.

    Bader RFW (1990) A quantum theory. Clarendon Press, Oxford

    Google Scholar 

  64. 64.

    Koch U, Popelier PLA (1995) Characterization of C–H–O hydrogen-bonds on the basis of the charge-density. J Phys Chem 99:9747–9754

    CAS  Article  Google Scholar 

  65. 65.

    Mizuse K, Fujii A (2011) Infrared photodissociation spectroscopy of H+(H2O)(6)center dot M-m (M = Ne, Ar, Kr, Xe, H-2, N-2, and CH4): messenger-dependent balance between H3O+ and H5O2 + core isomers. Phys Chem Chem Phys 13:7129–7135

    CAS  Article  Google Scholar 

  66. 66.

    Mata I, Alkorta I, Molins E, Espinosa E (2010) Universal features of the electron density distribution in hydrogen-bonding regions: a comprehensive study involving H center dot center dot center dot X (X = H, C, N, O, F, S, Cl, pi) interactions. Chem Eur J 16:2442–2452

    CAS  Article  Google Scholar 

  67. 67.

    Ramirez F, Hadad CZ, Guerra D, David J, Restrepo A (2011) Structural studies of the water pentamer. Chem Phys Lett 507:229–233

    CAS  Article  Google Scholar 

Download references


The authors would like to thank the supports by the Science Challenge Project (Grant No. TZ2016001) and the National Natural Science Foundation of China (Grant No. 11504035). We also acknowledge the support for the computational resources by the State Key Laboratory of Polymer Materials Engineering of China in Sichuan University.

Author information



Corresponding authors

Correspondence to Cui-E Hu or Yan Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Zhang, S., Hu, C. et al. Ab initio investigation of cationic water cluster (H2O) +13 via particle swarm optimization algorithm. Theor Chem Acc 138, 83 (2019). https://doi.org/10.1007/s00214-019-2464-8

Download citation


  • (H2O) +13 cluster
  • Isomers
  • Infrared spectra
  • Hydrogen bonding