New insights into Fe–H\(_{2}\) and Fe–H\(^{-}\) bonding of a [NiFe] hydrogenase mimic: a local vibrational mode study

  • Małgorzata Z. Makoś
  • Marek Freindorf
  • Daniel Sethio
  • Elfi KrakaEmail author
Regular Article
Part of the following topical collections:
  1. 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018)


In this work, we investigated the strength of the \({\hbox {H}}^{-}\) and \({\hbox {H}}_{2}\) interaction with the Fe atom of a [NiFe] hydrogenase mimic, and how this interaction can be modulated by changing the Fe ligand in trans-position relative to \({\hbox {H}}^{-}\) and \({\hbox {H}}_{2}\). We used as a quantitative measure of bond strength local vibrational force constants derived from the Konkoli–Cremer local mode analysis, complemented by the topological analysis of the electronic density and the natural bond orbital analysis. Seventeen different ligands were investigated utilizing density functional theory calculations, including \({\sigma }\)-donor ligands such as \({\hbox {CH}}_{3}^{-}\), \({\hbox {C}}_{2}{\hbox {H}}_{5}^{-}\), \({\hbox {NH}}_{3}\), and \({\hbox {H}}_{2}\hbox {O}\), \({\pi }\)-donor ligands such as \({\hbox {Cl}}^{-}\), \({\hbox {F}}^{-}\), and \({\hbox {OH}}^{-}\), and \({\sigma }\)-donor/\({\pi }\)-acceptor ligands such as \({\hbox {CN}}^{-}\) and CO. According to the local mode analysis, Fe–H interactions are strengthened by \({\sigma }\)-donor or \({\pi }\)-donor ligands and weakened by \({\sigma }\)-donor/\({\pi }\)-acceptor ligands. In contrast, the H–H bond of \({\hbox {H}}_{2}\) is weakened by \({\sigma }\)-donor or \({\pi }\)-donor ligands and strengthened by \({\sigma }\)-donor/\({\pi }\)-acceptor ligands. We also present a new metal–ligand electronic parameter (MLEP) for Fe–H ligands which can be generally applied to evaluate the Fe–H bond strength in iron complexes and iron hydrides. These results form a valuable basis for future [NiFe] hydrogenase-based catalyst design and fine tuning, as well as for the development of efficient biomimetic catalysts for \({\hbox {H}}_{2}\) generation.


[NiFe] Hydrogenase mimic [NiFe] Hydrogen Hydride complexes Local vibrational mode analysis Local mode force constants Metal–ligand electronic parameter (MLEP) 



This work was finally supported by the National Science Foundation, Grant CHE 1464906. We thank SMU for providing excellent computational resources.

Supplementary material

214_2019_2463_MOESM1_ESM.pdf (12.3 mb)
Supplementary material 1 (pdf 12668 KB)


  1. 1.
    Andersson K, Malmqvist PÅ, Roos BO, Sadlej AJ, Wolinski K (1990) Second-order perturbation theory with a CASSCF reference function. J Phys Chem 94(14):5483–5488Google Scholar
  2. 2.
    Aoto YA, de Lima Batista AP, Köhn A, de Oliveira-Filho AGS (2017) How to arrive at accurate benchmark values for transition metal compounds: computation or experiment? J Chem Theory Comput 13(11):5291–5316PubMedGoogle Scholar
  3. 3.
    Assefa MK, Devera JL, Brathwaite AD, Mosley JD, Duncan MA (2015) Vibrational scaling factors for transition metal carbonyls. Chem Phys Lett 640:175–179Google Scholar
  4. 4.
    Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, OxfordGoogle Scholar
  5. 5.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules: atomic volumes. J Am Chem Soc 109(26):7968–7979Google Scholar
  6. 6.
    Bartlett RJ, Musiał M (2007) Coupled-cluster theory in quantum chemistry. Rev Mod Phys 79(1):291–352Google Scholar
  7. 7.
    Barton BE, Rauchfuss TB (2010) Hydride-containing models for the active site of the nickel–iron hydrogenases. J Am Chem Soc 132(42):14,877–14,885Google Scholar
  8. 8.
    Barton BE, Whaley CM, Rauchfuss TB, Gray DL (2009) Nickel–iron dithiolato hydrides relevant to the [NiFe]-hydrogenase active site. J Am Chem Soc 131(20):6942–6943PubMedPubMedCentralGoogle Scholar
  9. 9.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100Google Scholar
  10. 10.
    Breglia R, Greco C, Fantucci P, De Gioia L, Bruschi M (2018) Theoretical investigation of aerobic and anaerobic oxidative inactivation of the [NiFe]-hydrogenase active site. Phys Chem Chem Phys 20:1693–1706PubMedGoogle Scholar
  11. 11.
    Breglia R, Greco C, Fantucci P, De Gioia L, Bruschi M (2019) Reactivation of the ready and unready oxidized states of [NiFe]-hydrogenases: mechanistic insights from DFT calculations. Inorg Chem 58:279–293PubMedGoogle Scholar
  12. 12.
    Buda C, Kazi AB, Dinescu A, Cundari TR (2005) Stability studies of transition–metal linkage isomers using quantum mechanical methods. Groups 11 and 12 transition metals. J Chem Inf Model 45:965–970PubMedGoogle Scholar
  13. 13.
    Bühl M, Kabrede H (2006) Geometries of transition–metal complexes from density-functional theory. J Chem Theory Comput 2(5):1282–1290PubMedGoogle Scholar
  14. 14.
    Burgdorf T, Lenz O, Buhrke T, van der Linden E, Jones AK, Albracht SPJ, Friedrich B (2005) [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J Mol Microbiol Biotechnol 10(2–4):181–196PubMedGoogle Scholar
  15. 15.
    Canaguier S, Field M, Oudart Y, Pécaut J, Fontecave M, Artero V (2010) A structural and functional mimic of the active site of NiFe hydrogenases. ChemCommun 46(32):5876–5878Google Scholar
  16. 16.
    Carroll PK, McCormack P (1972) The spectrum of FeH: laboratory and solar identification. Astrophys J 177:L33Google Scholar
  17. 17.
    Chval Z, Sip M, Burda JV (2008) The trans effect in square-planar platinum(II) complexes—a density functional study. J Comput Chem 29(14):2370–2381PubMedGoogle Scholar
  18. 18.
    Coe BJ, Glenwright SJ (2000) Trans-effects in octahedral transition metal complexes. Coord Chem Rev 203:5Google Scholar
  19. 19.
    Crabtree GW, Dresselhaus MS (2008) The hydrogen fuel alternative. MRS Bull 33(4):514–516Google Scholar
  20. 20.
    Crabtree RH (2005) The organometallic chemistry of the transition metals, vol 18. Wiley-Interscience, New YorkGoogle Scholar
  21. 21.
    Cremer D (1987) New ways of analyzing chemical bonding. In: Maksic ZB (ed) Modelling of structure and properties of molecules. Ellis Horwood, Chichester, p 125Google Scholar
  22. 22.
    Cremer D (1998) Møller–Plesset perturbation theory. In: Schleyer P, Allinger N, Clark T, Gasteiger J, Kollman P, Schaefer H III, Schreiner P (eds) Encyclopedia of computational chemistry. Wiley, New York, pp 1706–1735Google Scholar
  23. 23.
    Cremer D, Kraka E (1984) Chemical bonds without bonding electron density? Does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed 23(8):627–628Google Scholar
  24. 24.
    Cremer D, Kraka E (1984) A description of the chemical bond in terms of local properties of electron density and energy. Croat Chem Acta 57:1259–1281Google Scholar
  25. 25.
    Cremer D, Kraka E (2010) From molecular vibrations to bonding, chemical reactions, and reaction mechanism. Curr Org Chem 14:1524–1560Google Scholar
  26. 26.
    Cremer D, Kraka E (2017) Generalization of the tolman electronic parameter: the metal–ligand electronic parameter and the intrinsic strength of the metal–ligand bond. Dalton Trans 46(26):8323–8338PubMedGoogle Scholar
  27. 27.
    Cremer D, Larsson JA, Kraka E (1998) New developments in the analysis of vibrational spectra on the use of adiabatic internal vibrational modes. In: Parkanyi C (ed) Theoretical and computational chemistry. Elsevier, Amsterdam, pp 259–327Google Scholar
  28. 28.
    Delcey MG, Pierloot K, Phung QM, Vancoillie S, Lindh R, Ryde U (2014) Accurate calculations of geometries and singlet-triplet energy differences for active-site models of [NiFe] hydrogenase. Phys Chem Chem Phys 16(17):7929–7938Google Scholar
  29. 29.
    DeYonker NJ, Allen WD (2012) Taming the low-lying electronic states of FeH. J Chem Phys 137(23):234,303Google Scholar
  30. 30.
    Dole F, Fournel A, Magro V, Hatchikian EC, Bertrand P, Guigliarelli B (1997) Nature and electronic structure of the Ni-X dinuclear center of Desulfovibrio gigas hydrogenase. Implications for the enzymatic mechanism. Biochem 36(25):7847–7854Google Scholar
  31. 31.
    Dong G, Phung QM, Pierloot K, Ryde U (2018) Reaction mechanism of [NiFe] hydrogenase studied by computational methods. Inorg Chem 57(24):15,289–15,298Google Scholar
  32. 32.
    Esmieu C, Raleiras P, Berggren G (2018) From protein engineering to artificial enzymes biological and biomimetic approaches towards sustainable hydrogen production. Sustain Energy Fuels 2:724–750Google Scholar
  33. 33.
    Fang Z, Vasiliu M, Peterson KA, Dixon DA (2017) Prediction of bond dissociation energies/heats of formation for diatomic transition metal compounds: CCSD(T) works. J Chem Theory Comput 13(3):1057–1066PubMedGoogle Scholar
  34. 34.
    Finley J, Malmqvist PÅ, Roos BO, Serrano-Andrés L (1998) The multi-state CASPT2 method. Chem Phys Lett 288(2–4):299–306Google Scholar
  35. 35.
    Freindorf M, Kraka E, Cremer D (2012) A comprehensive analysis of hydrogen bond interactions based on local vibrational modes. Int J Quantum Chem 112(19):3174–3187Google Scholar
  36. 36.
    Freindorf M, Tao Y, Sethio D, Cremer D, Kraka E (2018) New mechanistic insights into the Claisen rearrangement of chorismate—a Unified Reaction Valley Approach study. Mol Phys 117(9–12):1172–1192 CrossRefGoogle Scholar
  37. 37.
    Frey M, Robson R, Cammack R (2001) Hydrogen as a fuel: learning from nature. Taylor and Francis, LondonGoogle Scholar
  38. 38.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian16 Revision A.03. Gaussian Inc., WallingfordGoogle Scholar
  39. 39.
    Gao X, Li N, King RB (2018) Heterometallic bonding between a first row transition metal and a third row transition metal: the cyclopentadienyliron rhenium carbonyls CpFeRe(CO)\(_n\) (n = 7, 6, 5). Polyhedron 145:231–238Google Scholar
  40. 40.
    Gräfenstein J, Izotov D, Cremer D (2007) Avoiding singularity problems associated with meta-GGA (generalized gradient approximation) exchange and correlation functionals containing the kinetic energy density. J Chem Phys 127(21):214,103Google Scholar
  41. 41.
    Guégan F, Tognetti V, Joubert L, Chermette H, Luneau D, Morell C (2015) Towards the first theoretical scale of the trans effect in octahedral complexes. Phys Chem Chem Phys 18(2):982–990Google Scholar
  42. 42.
    Harrison DJ, Lough AJ, Fekl U (2018) A new structural model for NiFe hydrogenases: an unsaturated analogue of a classic hydrogenase model leads to more enzyme-like Ni–Fe distance and interplanar fold. Acta Crystallogr E 74(9):1222–1226Google Scholar
  43. 43.
    Helm ML, Stewart MP, Bullock RM, DuBois MR, DuBois DL (2011) A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s\(^{-1}\) for \(\text{ H }_{2}\) production. Science 333(6044):863–866PubMedGoogle Scholar
  44. 44.
    Hexter SV, Grey F, Happe T, Climent V, Armstrong FA (2012) Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases. Proc Natl Acad Sci 109(29):11,516–11,521Google Scholar
  45. 45.
    Hiberty PC, Danovich D, Shurki A, Shaik S (1995) Why does benzene possess a \(\text{D}_{{6h}}\) symmetry? A quasiclassical state approach for probing \({\pi }\)-bonding and delocalization energies. J Am Chem Soc 117:7760–7768Google Scholar
  46. 46.
    Hush NS (1997) Relationship between H–D spin–spin coupling and internuclear distance in molecular hydrogen complexes. J Am Chem Soc 119(7):1717–1719Google Scholar
  47. 47.
    Isegawa M, Sharma AK, Ogo S, Morokuma K (2018) Electron and hydride transfer in a redox-active NiFe hydride complex: a DFT study. ACS Catal 8(11):10,419–10,429Google Scholar
  48. 48.
    Jayapal P, Robinson D, Sundararajan M, Hillier IH, McDouall JJW (2008) High level ab initio and DFT calculations of models of the catalytically active Ni–Fe hydrogenases. Phys Chem Chem Phys 10(13):1734–1738PubMedGoogle Scholar
  49. 49.
    Jean Y, Eisenstein O, Volatron F, Maouche B, Sefta F (1986) Interaction between d6 \(\text{ ML }_{5}\) metal fragments and hydrogen: \(\eta ^2\)-\(\text{ H }_{2}\) vs. dihydride structure. J Am Chem Soc 108(21):6587–6592Google Scholar
  50. 50.
    Jiang W, DeYonker NJ, Wilson AK (2012) Multireference character for 3d transition–metal-containing molecules. J Chem Theory Comput 8(2):460–468PubMedGoogle Scholar
  51. 51.
    Jones NO, Beltran MR, Khanna SN, Baruah T, Pederson MR (2004) Hydrogen adsorption and magnetic behavior of \(\text{ Fe }_{n}\) and \(\text{ Co }_{n}\) clusters: controlling the magnetic moment and anisotropy one atom at a time. Phys Rev B 70(16):165,406Google Scholar
  52. 52.
    Jugder BE, Welch J, Aguey-Zinsou KF, Marquis CP (2013) Fundamentals and electrochemical applications of [NiFe]-uptake hydrogenases. RSC Advances 3(22):8142Google Scholar
  53. 53.
    Kalescky R, Zou W, Kraka E, Cremer D (2012) Local vibrational modes of the water dimer—comparison of theory and experiment. Chem Phys Lett 554:243–247Google Scholar
  54. 54.
    Kalescky R, Kraka E, Cremer D (2013) Identification of the strongest bonds in chemistry. J Phys Chem A 117(36):8981–8995PubMedGoogle Scholar
  55. 55.
    Kalescky R, Kraka E, Cremer D (2013) Local vibrational modes of the formic acid dimer—the strength of the double hydrogen bond. Mol Phys 111(9–11):1497–1510Google Scholar
  56. 56.
    Kalescky R, Kraka E, Cremer D (2013) New approach to Tolman’s electronic parameter based on local vibrational modes. Inorg Chem 53(1):478–495PubMedGoogle Scholar
  57. 57.
    Kampa M, Lubitz W, Van Gastel M, Neese F (2012) Computational study of the electronic structure and magnetic properties of the Ni–C state in [NiFe] hydrogenases including the second coordination sphere. J Biol Inorg Chem 17(8):1269–1281PubMedGoogle Scholar
  58. 58.
    Kaupp M, Danovich D, Shaik S (2017) Chemistry is about energy and its changes: a critique of bond-length/bond-strength correlations. Coord Chem Rev 344:355–362Google Scholar
  59. 59.
    Kaur-Ghumaan S, Stein M (2014) Hydrogenases: how close do structural and functional mimics approach the active site? Dalton Trans 43(25):9392–9405PubMedGoogle Scholar
  60. 60.
    Keith TA (2017) AIMAll Version 17.11.14. K Gristmill Software, Overland Park KS, USA ( Scholar
  61. 61.
    Kikkawa M, Yatabe T, Matsumoto T, Yoon KS, Suzuki K, Enomoto T, Kaneko K, Ogo S (2017) A fusion of biomimetic fuel and solar cells based on hydrogenase, photosystem II, and cytochrome c oxidase. ChemCatChem 9:4024–4028Google Scholar
  62. 62.
    Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, 2nd edn. Wiley-VCH Verlag GmbH, New YorkGoogle Scholar
  63. 63.
    Kochem A, Bill E, Neese F, Van Gastel M (2015) Mössbauer and computational investigation of a functional [NiFe] hydrogenase model complex. Chem Commun 51(11):2099–2102Google Scholar
  64. 64.
    Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100(31):12,974–12,980Google Scholar
  65. 65.
    Kohn W, Becke AD, Parr RG (2014) Perspective: fifty years of density-functional theory in chemical physics. J Chem Phys 140:18A301-1–18A301-18Google Scholar
  66. 66.
    Konkoli Z, Cremer D (1998) A new way of analyzing vibrational spectra. I. derivation of adiabatic internal modes. Int J Quantum Chem 67(1):1–9Google Scholar
  67. 67.
    Konkoli Z, Cremer D (1998) A new way of analyzing vibrational spectra. III. Characterization of normal vibrational modes in terms of internal vibrational modes. Int J Quantum Chem 67(1):29–40Google Scholar
  68. 68.
    Konkoli Z, Larsson JA, Cremer D (1998) A new way of analyzing vibrational spectra. II. Comparison of internal mode frequencies. Int J Quantum Chem 67(1):11–27Google Scholar
  69. 69.
    Konkoli Z, Larsson JA, Cremer D (1998) A new way of analyzing vibrational spectra. IV. Application and testing of adiabatic modes within the concept of the characterization of normal modes. Int J Quantum Chem 67(1):41–55Google Scholar
  70. 70.
    Körsgen H, Urban W, Brown JM (1999) The infrared spectrum of \(\text{ FeH }_{2}\), studied in the gas phase by laser magnetic resonance. J Chem Phys 110(8):3861–3869Google Scholar
  71. 71.
    Kosar N, Ayub K, Gilani MA, Mahmood T (2019) Benchmark DFT studies on C–CN homolytic cleavage and screening the substitution effect on bond dissociation energy. J Mol Model 25(2):47PubMedGoogle Scholar
  72. 72.
    Kraka E (2011) Reaction path Hamiltonian and the unified reaction valley approach. WIREs Comput Mol Sci 1(4):531–556. CrossRefGoogle Scholar
  73. 73.
    Kraka E, Cremer D (1990) Chemical implication of local features of the electron density distribution. In: Maksic ZB (ed) Theoretical models of chemical bonding. The concept of the chemical bond, vol 2. Springer, Heidelberg, p 453Google Scholar
  74. 74.
    Kraka E, Cremer D (2009) Characterization of CF bonds with multiple-bond character: bond lengths, stretching force constants, and bond dissociation energies. Chem Phys Chem 10(4):686–698PubMedGoogle Scholar
  75. 75.
    Kraka E, Cremer D (2010) Computational analysis of the mechanism of chemical reactions in terms of reaction phases: hidden intermediates and hidden transition states. Acc Chem Res 43(5):591–601. CrossRefPubMedGoogle Scholar
  76. 76.
    Kraka E, Larsson JA, Cremer D (2010) Generalization of the Badger rule based on the use of adiabatic vibrational modes. In: Grunenberg J (ed) Computational spectroscopy. Wiley, New York, pp 105–149Google Scholar
  77. 77.
    Kraka E, Zou W, Freindorf M, Cremer D (2012) Energetics and mechanism of the hydrogenation of XH\(_n\) for group IV to group VII elements X. J Chem Theory Comput 8(12):4931–4943. CrossRefPubMedGoogle Scholar
  78. 78.
    Kraka E, Setiawan D, Cremer D (2015) Re-evaluation of the bond length-bond strength rule: the stronger bond is not always the shorter bond. J Comput Chem 37(1):130–142PubMedGoogle Scholar
  79. 79.
    Kraka E, Zou W, Filatov M, Gräfenstein J, Izotov D, Gauss J, He Y, Wu A, Konkoli Z, Polo V, Olsson L, He Z, Cremer D (2018) COLOGNE. See
  80. 80.
    Kubas GJ (2007) Fundamentals of \(\text{ H }_{2}\) binding and reactivity on transition metals underlying hydrogenase function and \(\text{ H }_{2}\) production and storage. Chem Rev 107(10):4152–4205PubMedGoogle Scholar
  81. 81.
    Lai W, Li C, Chen H, Shaik S (2012) Hydrogen-abstraction reactivity patterns from a to y: the valence bond way. Angew Chem Int Ed 51:5556–5578Google Scholar
  82. 82.
    Lauterbach L, Lenz O (2013) Catalytic production of hydrogen peroxide and water by oxygen-tolerant [NiFe]-hydrogenase during \(\text{ H }_{2}\) cycling in the presence of \(\text{ O }_{{2}}\). J Am Chem Soc 135(47):17,897–17,905Google Scholar
  83. 83.
    Levine DS, Head-Gordon M (2017) Energy decomposition analysis of single bonds within Kohn–Sham density functional theory. Proc Natl Acad Sci USA 114(48):12,649–12,656Google Scholar
  84. 84.
    Li HW, Zhu M, Buckley C, Jensen T (2018) Functional materials based on metal hydrides. Inorg 6(3):91Google Scholar
  85. 85.
    Lubitz W, Reijerse E, van Gastel M (2007) [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem Rev 107(10):4331–4365PubMedGoogle Scholar
  86. 86.
    Lubitz W, Ogata H, Ru O, Reijerse E (2014) Hydrogenases. Chem Rev 114:4081–4148PubMedGoogle Scholar
  87. 87.
    Mardirossian N, Head-Gordon M (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys 115(19):2315–2372Google Scholar
  88. 88.
    Mayer I (1983) Charge, bond brder an valence in the ab initio theory. Chem Phys Lett 97:270–274Google Scholar
  89. 89.
    Mayer I (1986) Bond orders and valences from ab initio wave functions. Int J Quantum Chem 29:477–483Google Scholar
  90. 90.
    Mayer I (2007) Bond order and valence indices: a personal account. J Comput Chem 28:204–221PubMedGoogle Scholar
  91. 91.
    Morse MD (2018) Predissociation measurements of bond dissociation energies. Acc Chem Res 52(1):119–126PubMedGoogle Scholar
  92. 92.
    Nakazawa H, Itazaki M (2011) Fe–H complexes in catalysis. In: Plietker B (ed) Iron catalysis: fundamentals and applications. Springer, Berlin, pp 27–81Google Scholar
  93. 93.
    Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2(1):73–78Google Scholar
  94. 94.
    Ogo S (2009) Electrons from hydrogen. ChemCommun 33(23):3317Google Scholar
  95. 95.
    Ogo S, Ichikawa K, Kishima T, Matsumoto T, Nakai H, Kusaka K, Ohhara T (2013) A functional [NiFe]hydrogenase mimic that catalyzes electron and hydride transfer from \(\text{ H }_{2}\). Science 339(6120):682–684PubMedGoogle Scholar
  96. 96.
    Oliveira V, Cremer D (2017) Transition from metal–ligand bonding to halogen bonding involving a metal as halogen acceptor a study of Cu, Ag, Au, Pt, and Hg complexes. Chem Phys Lett 681:56–63Google Scholar
  97. 97.
    Oliveira V, Kraka E (2017) Systematic coupled cluster study of noncovalent interactions involving halogens, chalcogens, and pnicogens. J Phys Chem A 121(49):9544–9556PubMedGoogle Scholar
  98. 98.
    Oliveira V, Kraka E, Cremer D (2016) The intrinsic strength of the halogen bond: electrostatic and covalent contributions described by coupled cluster theory. Phys Chem Chem Phys 18(48):33,031–33,046Google Scholar
  99. 99.
    Oliveira V, Kraka E, Cremer D (2016) Quantitative assessment of halogen bonding utilizing vibrational spectroscopy. Inorg Chem 56(1):488–502PubMedGoogle Scholar
  100. 100.
    Oliveira V, Cremer D, Kraka E (2017) The many facets of chalcogen bonding: described by vibrational spectroscopy. J Phys Chem A 121(36):6845–6862PubMedGoogle Scholar
  101. 101.
    Pan S, Zhao L, Rasika Dias HV, Frenking G (2018) Bonding in binuclear carbonyl complexes \(\text{ M }_{2}\text{(CO) }_{9}\) (M = Fe, Ru, Os). Inorg Chem 57(13):7780–7791PubMedPubMedCentralGoogle Scholar
  102. 102.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33(12):8822–8824Google Scholar
  103. 103.
    Perotto CU, Sodipo CL, Jones GJ, Tidey JP, Blake AJ, Lewis W, Davies ES, McMaster J, Schröder M (2018) Heterobimetallic [NiFe] complexes containing mixed CO/CN-ligands: analogs of the active site of the [NiFe] hydrogenases. Inorg Chem 57(5):2558–2569PubMedGoogle Scholar
  104. 104.
    Pinter B, Van Speybroeck V, Waroquier M, Geerlings P, De Proft F (2013) Trans effect and trans influence: importance of metal mediated ligand–ligand repulsion. Phys Chem Chem Phys 15(40):17,354–17,365Google Scholar
  105. 105.
    Pulay P (2011) A perspective on the CASPT2 method. Int J Quantum Chem 111(13):3273–3279Google Scholar
  106. 106.
    Qiu S, Azofra LM, MacFarlane DR, Sun C (2016) Unraveling the role of ligands in the hydrogen evolution mechanism catalyzed by [NiFe] hydrogenases. ACS Catal 6(8):5541–5548Google Scholar
  107. 107.
    Qiu S, Azofra LM, MacFarlane DR, Sun C (2016) Why is a proton transformed into a hydride by [NiFe] hydrogenases? An intrinsic reactivity analysis based on conceptual DFT. Phys Chem Chem Phys 18(22):15,369–15,374Google Scholar
  108. 108.
    Qiu S, Azofra LM, MacFarlane DR, Sun C (2018) Hydrogen bonding effect between active site and protein environment on catalysis performance in \(\text{ H }_{2}\)-producing [NiFe] hydrogenases. Phys Chem Chem Phys 20(9):6735–6743PubMedGoogle Scholar
  109. 109.
    Qiu S, Azofra LM, MacFarlane DR, Sun C (2018) Hydrogen bonding effect between active site and protein environment on catalysis performance in H-producing [NiFe] hydrogenases. PhysChemChemPhys 20:6735–6743Google Scholar
  110. 110.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88(6):899–926Google Scholar
  111. 111.
    Rezaeani F, Ghiasi R, Yousefi M (2018) Theoretical studies of solvent effect on the structure, bonding, and spectroscopic properties (IR, NMR) in the cis-[\(\text{ Pt }(\text{ PH }_{3})_{2}\text{(NCS) }_{2}]\) and \([\text{ Pt }(\text{ PH }_{3})_{2}(\text{ SCN })_{2}]\) linkage isomers. Russ J Phys Chem 92:1748–1756Google Scholar
  112. 112.
    Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB (2016) Hydrogenase enzymes and their synthetic models: the role of metal hydrides. Chem Rev 116(15):8693–8749PubMedPubMedCentralGoogle Scholar
  113. 113.
    Sethio D, Oliveira V, Kraka E (2018) Quantitative assessment of tetrel bonding utilizing vibrational spectroscopy. Molecules 23(11):2763PubMedCentralGoogle Scholar
  114. 114.
    Sethio D, Daku LML, Hagemann H, Kraka E (2019) Quantitative assessment of B–B–B, B–H\(_{b}\)–B, and B–H\(_{{t}}\) bonds: from \(\text{ BH }_{3}\) to \(\text{ B }_{12}\text{ H }_{12}^{2-}\). ChemPhysChem. CrossRefPubMedGoogle Scholar
  115. 115.
    Setiawan D, Cremer D (2016) Super-pnicogen bonding in the radical anion of the fluorophosphine dimer. Chem Phys Lett 662:182–187Google Scholar
  116. 116.
    Setiawan D, Kraka E, Cremer D (2014) Description of pnicogen bonding with the help of vibrational spectroscopy—the missing link between theory and experiment. Chem Phys Lett 614:136–142Google Scholar
  117. 117.
    Setiawan D, Kraka E, Cremer D (2014) Strength of the pnicogen bond in complexes involving group VA Elements N, P, and As. J Phys Chem A 119(9):1642–1656PubMedGoogle Scholar
  118. 118.
    Setiawan D, Kraka E, Cremer D (2015) Hidden bond anomalies: the peculiar case of the fluorinated amine chalcogenides. J Phys Chem A 119(36):9541–9556PubMedGoogle Scholar
  119. 119.
    Setiawan D, Kalescky R, Kraka E, Cremer D (2016) Direct measure of metal–ligand bonding replacing the tolman electronic parameter. Inorg Chem 55(5):2332–2344PubMedGoogle Scholar
  120. 120.
    Setiawan D, Sethio D, Cremer D, Kraka E (2018) From strong to weak NF bonds: on the design of a new class of fluorinating agents. Phys Chem Chem Phys 20(37):23,913–23,927Google Scholar
  121. 121.
    Shriver DF, Atkins PW (2001) Inorganic chemistry, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  122. 122.
    Siegbahn PEM, Tye JW, Hall MB (2007) Computational studies of [NiFe] and [FeFe] hydrogenases. Chem Rev 107:4414–4435PubMedGoogle Scholar
  123. 123.
    Siegbahn PEM, Tye JW, Hall MB (2007) Computational studies of [NiFe] and [FeFe] hydrogenases. Chem Rev 107(10):4414–4435PubMedGoogle Scholar
  124. 124.
    Silaghi-Dumitrescu I, Bitterwolf TE, King RB (2006) Butterfly diradical intermediates in photochemical reactions of \(\text{ Fe } \,2\text{(CO) }_{6}(\mu -\text{ S }_{2})\). J Am Chem Soc 128(16):5342–5343PubMedGoogle Scholar
  125. 125.
    Song LC, Yang XY, Cao M, Gao XY, Liu BB, Zhu L, Jiang F (2017) Dithiolato-bridged nickel–iron complexes as models for the active site of [NiFe]-hydrogenases. ChemCommun 53(27):3818–3821Google Scholar
  126. 126.
    Stasyuk OA, Sedlak R, Guerra CF, Hobza P (2018) Comparison of the DFT-SAPT and canonical EDA schemes for the energy decomposition of various types of noncovalent interactions. J Chem Theory Comput 14(7):3440–3450PubMedGoogle Scholar
  127. 127.
    Tai H, Higuchi Y, Hirota S (2018) Comprehensive reaction mechanisms at and nearby the Ni–Fe active sites of [NiFe] hydrogenases. Dalton Trans 47:4408–4423PubMedGoogle Scholar
  128. 128.
    Tang H, Hall MB (2017) Biomimetics of [NiFe]-hydrogenase: nickel- or iron-centered proton reduction catalysis? J Am Chem Soc 139(49):18,065–18,070Google Scholar
  129. 129.
    Tao Y, Zou W, Jia J, Li W, Cremer D (2016) Different ways of hydrogen bonding in water. Why does warm water freeze faster than cold water? J Chem Theory Comput 13(1):55–76PubMedGoogle Scholar
  130. 130.
    Tolman CA (1970) Phosphorus ligand exchange equilibriums on zerovalent nickel. Dominant role for steric effects. J Am Chem Soc 92(10):2953–2956Google Scholar
  131. 131.
    Tolman CA (1972) The 16 and 18 electron rule in organometallic chemistry and homogeneous catalysis. Chem Soc Rev 1(3):337Google Scholar
  132. 132.
    Tolman CA (1977) Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem Rev 77:313–348Google Scholar
  133. 133.
    Tuan DFT, Reed JW, Hoffmann R (1991) Studies of the linkage and bonding of triatomics in transition metal complexes. J Mol Struct Theochem 232:111–121Google Scholar
  134. 134.
    Ulloa OA, Huynh MT, Richers CP, Bertke JA, Nilges MJ, Hammes-Schiffer S, Rauchfuss TB (2016) Mechanism of \(\text{ H }_{2}\) production by models for the [NiFe]-hydrogenases: role of reduced hydrides. J Am Chem Soc 138(29):9234–9245PubMedPubMedCentralGoogle Scholar
  135. 135.
    Vidal-Limón AM, Tafoya P, Santini BL, Contreras OE, Aguila SA (2017) Electron transfer pathways analysis of oxygen tolerant [NiFe]-hydrogenases for hydrogen production: a quantum mechanics/molecular mechanics—statistical coupled analysis. Int J Hydrog Energy 42(32):20494–20502Google Scholar
  136. 136.
    Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107(10):4206–4272PubMedGoogle Scholar
  137. 137.
    Vincent KA, Cracknell JA, Lenz O, Zebger I, Friedrich B, Armstrong FA (2005) Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels. Proc Natl Acad Sci 102:16,951–16,954Google Scholar
  138. 138.
    Vogiatzis KD, Polynski MV, Kirkland JK, Townsend J, Hashemi A, Liu C, Pidko EA (2019) Computational approach to molecular catalysis by 3d transition metals: challenges and opportunities. Chem Rev 119(4):2453–2523 PubMedGoogle Scholar
  139. 139.
    Weber K, Krämer T, Shafaat HS, Weyhermüller T, Bill E, Van Gastel M, Neese F, Lubitz W (2012) A functional [NiFe]-hydrogenase model compound that undergoes biologically relevant reversible thiolate protonation. J Am Chem Soc 134(51):20,745–20,755Google Scholar
  140. 140.
    Wilson EB, Decius JC, Cross PCM (1955) Molecular vibrations. The theory of infrared and Raman vibrational spectra. McGraw-Hill, New YorkGoogle Scholar
  141. 141.
    Wombwell C, Caputo CA, Reisner E (2015) [NiFeSe]-hydrogenase chemistry. Acc Chem Res 48(11):2858–2865PubMedGoogle Scholar
  142. 142.
    Woon DE, Dunning TH (1995) Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon. J Chem Phys 103(11):4572–4585Google Scholar
  143. 143.
    Zhu W, Marr AC, Wang Q, Neese F, Spencer DJE, Blake AJ, Cooke PA, Wilson C, Schroder M (2005) Modulation of the electronic structure and the Ni–Fe distance in heterobimetallic models for the active site in [NiFe]hydrogenase. Proc Natl Acad Sci 102(51):18280–18285PubMedGoogle Scholar
  144. 144.
    Zou W, Cremer D (2016) C\(_2\) in a box: determining its intrinsic bond strength for the X\(^1\) \(\varSigma ^{+}_{g}\) ground state. Chem Eur J 22:4087–4097PubMedGoogle Scholar
  145. 145.
    Zou W, Kalescky R, Kraka E, Cremer D (2012) Relating normal vibrational modes to local vibrational modes with the help of an adiabatic connection scheme. J Chem Phys 137(8):084,114(1–11)Google Scholar
  146. 146.
    Zou W, Sexton T, Kraka E, Freindorf M, Cremer D (2016) A new method for describing the mechanism of a chemical reaction based on the unified reaction valley approach. J Chem Theory Comput 12(2):650–663. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computational and Theoretical Chemistry Group (CATCO), Department of ChemistrySouthern Methodist UniversityDallasUSA

Personalised recommendations