Microsolvation of lithium–phosphorus double helix: a DFT study

  • Gourhari Jana
  • Ruchi Jha
  • Sudip PanEmail author
  • Pratim Kumar ChattarajEmail author
Regular Article
Part of the following topical collections:
  1. 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018)


The chemistry of complexes becomes interesting due to their structural diversity in different environments like in aqueous phase, in gas-phase or in the interior of a host. In the last few decades, powerful tools for the determination of gas-phase have been developed. In this context, the microsolvation approach of Li7P7 helix, where the passage from the bare double-strand helix to the hydrated denatured helix, has been addressed through successive attachment of water molecules using density functional theory. The stability of helical structure of the small clusters has been analyzed on the basis of polar bonding interaction between oxygen end of water molecule and Li centers of the Li7P7 helix. The Li7P7 helix is favored when associated with zero to eight water molecules, but the binding of the ninth water molecule brings a drastic change in the structure. Our results suggest that the natural charges on some sites in Li7P7 are large enough to induce partial and eventually total dissociation of water molecules. We shed light on the bonding situation through natural bond orbital, quantum theory of atoms in molecules and energy decomposition analyses which suggest dominant electrostatic interaction between Li centers of Li7P7 and O centers of water molecules (accounting for 60–64% of total bonding attraction). Nevertheless, 31–36% of total attraction is also originated from the orbital interaction. Variation in reactivity on microhydration is also analyzed. In order to check the site selectivity, we have computed conceptual density functional theory-based local reactivity descriptors such as dual descriptor based on the Fukui function, Δf(r), and multiphilic descriptor based on the philicity, Δω(r).


Microsolvation Li7P7 helix Geometry and stability Nature of bonding CDFT 



PKC would like to thank Professors Manuel F. Ruiz-López and Manuel Alcamí for kindly inviting him to contribute an article to this special issue. He also thanks the DST, New Delhi, for the J. C. Bose National Fellowship. GJ thanks IIT, Kharagpur, for his fellowship. RJ thanks IIT, Kharagpur, for her fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this article, financial, and/or otherwise.

Supplementary material

214_2019_2462_MOESM1_ESM.doc (46 kb)
Supplementary material 1 (DOC 46 kb)


  1. 1.
    Arrhenius S (1887) Über die Dissociation der in Wasser gelösten Stoffe. Phys Chem 1:631–648Google Scholar
  2. 2.
    Mohamed AA, Jensen F (2001) Steric effects in SN2 reactions. The influence of microsolvation. J Phys Chem A 105:3259–3268CrossRefGoogle Scholar
  3. 3.
    Sicinska D, Paneth P, Truhlar DG (2002) How well does microsolvation represent macrosolvation? A test case: dynamics of decarboxylation of 4-pyridylacetic acid zwitterion. J Phys Chem B 106:2708–2713CrossRefGoogle Scholar
  4. 4.
    Re S, Morokuma K (2001) ONIOM study of chemical reactions in microsolvation clusters: (H2O)nCH3Cl+OH(H2O)m (n + m = 1 and 2). J Phys Chem A 105:7185–7197CrossRefGoogle Scholar
  5. 5.
    Mennucci B, Martínez JM, Tomasi J (2001) Solvent effects on nuclear shieldings: continuum or discrete solvation models to treat hydrogen bond and polarity effects? J Phys Chem A 105:7287–7296CrossRefGoogle Scholar
  6. 6.
    Mennucci B (2002) Hydrogen bond versus polar effects: an ab initio analysis on n → π* absorption spectra and N nuclear shieldings of diazines in solution. J Am Chem Soc 124:1506–1515CrossRefGoogle Scholar
  7. 7.
    Chattaraj PK, Pérez P, Zevallos J, Toro-Labbé A (2001) Ab initio SCF and DFT studies on solvent effects on intramolecular rearrangement reactions. J Phys Chem A 105:4272–4283CrossRefGoogle Scholar
  8. 8.
    Padmanabhan J, Parthasarathi R, Sarkar U, Subramanian V, Chattaraj P (2004) Effect of solvation on the condensed Fukui function and the generalized philicity index. Chem Phys Lett 383:122–128CrossRefGoogle Scholar
  9. 9.
    Das R, Bandaru S, D’mello VC, Chattaraj PK (2013) Effect of microsolvation on hydrogen trapping potential of metal ions. Chem Phys 415:256–268CrossRefGoogle Scholar
  10. 10.
    Imamura H, Murata Y, Tsuchiya S (1987) Magnesium-based hydrogen-storage materials: solvated Mg–Ni by metal vapour deposition. J Less Common Met 135:277–283CrossRefGoogle Scholar
  11. 11.
    Flórez E, Acelas N, Ibargüen C, Mondal S, Cabellos JL, Merino G, Restrepo A (2016) Microsolvation of NO3 : structural exploration and bonding analysis. RSC Adv 6:71913–71923CrossRefGoogle Scholar
  12. 12.
    IUPAC Gold Book, Accessed February 2018
  13. 13.
    Florez E, Acelas N, Ramírez F, Hadad C, Restrepo A (2018) Microsolvation of F. Phys Chem Chem Phys 20:8909–8916CrossRefGoogle Scholar
  14. 14.
    Draves JA, Luthey-Schulten Z, Liu WL, Lisy JM (1990) Gas-phase methanol solvation of Cs+: vibrational spectroscopy and Monte Carlo simulation. J Chem Phys 93:4589–4602CrossRefGoogle Scholar
  15. 15.
    Woodward C, Winkel J, Jones A, Stace A (1993) Infrared predissociation in cluster ions containing a guest chromophore. A gentle route to the dynamics and spectroscopy of heterogeneous systems. Chem Phys Lett 206:49–56CrossRefGoogle Scholar
  16. 16.
    Kung CY, Miller TA (1990) Inert gas clusters of C6F6 +: the evolution from isolated ion to solid matrix. J Chem Phys 92:3297–3309CrossRefGoogle Scholar
  17. 17.
    Bieske E, Soliva A, Friedmann A, Maier J (1994) The B ← X electronic spectra of N + 2–Ne n (1 ≤ n ≤ 8). J Chem Phys 100:4156–4164CrossRefGoogle Scholar
  18. 18.
    Ayotte P, Weddle GH, Kim J, Johnson MA (1998) Vibrational spectroscopy of the ionic hydrogen bond: fermi resonances and ion–molecule stretching frequencies in the binary X·H2O (X = Cl, Br, I) complexes via argon predissociation spectroscopy. J Am Chem Soc 120:12361–12362CrossRefGoogle Scholar
  19. 19.
    Chen H-Y, Sheu W-S (2000) Precursors of the charge-transfer-to-solvent states in I(H2O) n clusters. J Am Chem Soc 122:7534–7542CrossRefGoogle Scholar
  20. 20.
    Majumdar D, Kim J, Kim KS (2000) Charge transfer to solvent (CTTS) energies of small X(H2O) n = 1–4 (X = F, Cl, Br, I) clusters: ab initio study. J Chem Phys 112:101–105CrossRefGoogle Scholar
  21. 21.
    Markovich G, Pollack S, Giniger R, Cheshnovsky O (1994) Photoelectron spectroscopy of Cl, Br, and I solvated in water clusters. J Chem Phys 101:9344–9353CrossRefGoogle Scholar
  22. 22.
    Markovich G, Pollack S, Giniger R, Cheshnovsky O (1993) The solvation of iodine anions in water clusters: PES studies. Z Phys D 26:98–100CrossRefGoogle Scholar
  23. 23.
    Arnold DW, Bradforth SE, Kim EH, Neumark DM (1995) Study of I(CO2)n, Br(CO2)n, and I(N2O)n clusters by anion photoelectron spectroscopy. J Chem Phys 102:3510–3518CrossRefGoogle Scholar
  24. 24.
    Arnold DW, Bradforth SE, Kim EH, Neumark DM (1995) Study of halogen–carbon dioxide clusters and the fluoroformyloxyl radical by photodetachment of X(CO2)(X = I, Cl, Br) and FCO2 . J Chem Phys 102:3493–3509CrossRefGoogle Scholar
  25. 25.
    Pathak A, Samanta A, Maity D, Mukherjee T, Ghosh S (2010) Generalized microscopic theory for the detachment energy of solvated negatively charged ions in finite size clusters: a Step toward Bulk. J Phys Chem Lett 1:886–890CrossRefGoogle Scholar
  26. 26.
    Marcus Y (2009) Effect of ions on the structure of water: structure making and breaking. Chem Rev 109:1346–1370CrossRefGoogle Scholar
  27. 27.
    Becucci M, Melandri S (2016) High-resolution spectroscopic studies of complexes formed by medium-size organic molecules. Chem Rev 116:5014–5037CrossRefGoogle Scholar
  28. 28.
    Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116:2775–2825CrossRefGoogle Scholar
  29. 29.
    Gadre SR, Yeole SD, Sahu N (2014) Quantum chemical investigations on molecular clusters. Chem Rev 114:12132–12173CrossRefGoogle Scholar
  30. 30.
    Jissy A, Datta A (2013) What stabilizes the LinPn inorganic double helices? J Phys Chem Lett 4:1018–1022CrossRefGoogle Scholar
  31. 31.
    Ivanov AS, Morris AJ, Bozhenko KV, Pickard CJ, Boldyrev AI (2012) Inorganic double-helix structures of unusually simple lithium–phosphorus species. Angew Chem Int Ed 51:8330–8333CrossRefGoogle Scholar
  32. 32.
    Hu Y, Xu X, Jiang Y, Zhang G, Li W, Sun X, Tian WQ, Feng Y (2018) Double-helix PnLin chains: novel potential nonlinear optical materials. Phys Chem Chem Phys 20:12618–12623CrossRefGoogle Scholar
  33. 33.
    Jana G, Pan S, Rodríguez-Kessler PL, Merino G, Chattaraj PK (2018) Adsorption of molecular hydrogen on lithium–phosphorus double-helices. J Phys Chem C 122:27941–27946CrossRefGoogle Scholar
  34. 34.
    Ahn YM, Kang DY, Kwon JS, Kim CY, Kim CE, Bahn G, Shin Y, Lee GC, Lee DW, Yi JS (2001) Efficacy and safety of olanzapine in the treatment of Korean patients with schizophrenia and schizophreniform disorder: open multicenter clinical trial. J Korean Neuropsychiatr Assoc 40:693–707Google Scholar
  35. 35.
    Kushwaha P, Mishra P (2001) Stability of the normal, zwitterionic neutral and anionic forms of aspartic acid in gas phase and aqueous media. J Mol Struct 549:229–242CrossRefGoogle Scholar
  36. 36.
    Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129CrossRefGoogle Scholar
  37. 37.
    Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree–Fock water dimer. J Chem Phys 78:4066–4073CrossRefGoogle Scholar
  38. 38.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Revision A03. Gaussian Inc, WallingfordGoogle Scholar
  39. 39.
    Bader R et al (1990) AIMPAC: a suite of programs for the theory of atoms in molecules, Hamilton, Canada (contact Search PubMed; RFW Bader, Atoms in Molecules: A Quantum Theory. Clarendon Press, Oxford
  40. 40.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  41. 41.
    Morell C, Grand A, Toro-Labbe A (2005) New dual descriptor for chemical reactivity. J Phys Chem A 109:205–212CrossRefGoogle Scholar
  42. 42.
    Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874CrossRefGoogle Scholar
  43. 43.
    Chattaraj PK, Sarkar U, Roy DR (2006) Update 1 of: electrophilicity index. Chem Rev 106:2065CrossRefGoogle Scholar
  44. 44.
    Padmanabhan J, Parthasarathi R, Elango M, Subramanian V, Krishnamoorthy B, Gutierrez-Oliva S, Toro-Labbé A, Roy D, Chattaraj P (2007) Multiphilic descriptor for chemical reactivity and selectivity. J Phys Chem A 111:9130–9138CrossRefGoogle Scholar
  45. 45.
    Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree–Fock Slater method. Theoret Chim Acta 46:1–10CrossRefGoogle Scholar
  46. 46.
    Baerends EJ, Ziegler T, Autschbach J, Bashford D, Bérces A, Bickelhaupt F, Bo C, Boerrigter P, Cavallo L, Chong D (2017) ADF2017; SCM, theoretical chemistry. Vrije Universiteit, AmsterdamGoogle Scholar
  47. 47.
    Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJ, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967CrossRefGoogle Scholar
  48. 48.
    Pecher L, Pan S, Frenking G (2019) Chemical bonding in the hexamethylbenzene–SO2+ dication. Theor Chem Acc 138:47CrossRefGoogle Scholar
  49. 49.
    Chi C, Pan S, Meng L, Luo M, Zhao L, Zhou M, Frenking G (2019) Alkali metal covalent bonding in nickel carbonyl complexes ENi(CO)3−. Angew Chem Int Ed 58:1732–1738CrossRefGoogle Scholar
  50. 50.
    Pan S, Jana G, Merino G, Chattaraj PK (2019) Noble–noble strong union: gold at its best to make a bond with a noble gas atom. ChemistryOpen 8(2):173–187CrossRefGoogle Scholar
  51. 51.
    Su W, Pan S, Sun X, Wang S, Zhao L, Frenking G, Zhu C (2018) Double dative bond between divalent carbon (0) and uranium. Nat Commun 9(1):4997CrossRefGoogle Scholar
  52. 52.
    Wu X, Zhao L, Jin J, Pan S, Li W, Jin X, Wang G, Zhou M, Frenking G (2018) Observation of alkaline earth complexes M (CO) 8 (M = Ca, Sr, or Ba) that mimic transition metals. Science 361(6405):912–916CrossRefGoogle Scholar
  53. 53.
    Jana G, Pan S, Merino G, Chattaraj PK (2018) Noble gas inserted metal acetylides (Metal = Cu, Ag, Au). J Phys Chem A 122:7391–7401CrossRefGoogle Scholar
  54. 54.
    Jana G, Pan S, Osorio E, Zhao L, Merino G, Chattaraj PK (2018) Cyanide–isocyanide isomerization: stability and bonding in noble gas inserted metal cyanides (metal = Cu, Ag, Au). Phys Chem Chem Phys 20:18491–18502CrossRefGoogle Scholar
  55. 55.
    Pan S, Zhao L, Dias HR, Frenking G (2018) Bonding in binuclear carbonyl complexes M2 (CO)9 (M = Fe, Ru, Os). Inorg Chem 57:7780–7791CrossRefGoogle Scholar
  56. 56.
    Pan S, Jana G, Ravell E, Zarate X, Osorio E, Merino G, Chattaraj PK (2018) Stable NCNgNSi (Ng = Kr, Xe, Rn) compounds with covalently bound C–Ng–N Unit: possible Isomerization of NCNSi through the release of the noble gas atom. Chem Eur J 24:2879–2887CrossRefGoogle Scholar
  57. 57.
    Pan S, Kar S, Saha R, Osorio E, Zarate X, Zhao L, Merino G, Chattaraj PK (2018) Boron nanowheels with axles containing noble gas atoms: viable noble gas bound M© B10 clusters (M = Nb, Ta). Chem Eur J 24:3590–3598CrossRefGoogle Scholar
  58. 58.
    Mitoraj M, Michalak A (2007) Donor–acceptor properties of ligands from the natural orbitals for chemical valence. Organometallics 26:6576–6580CrossRefGoogle Scholar
  59. 59.
    Mitoraj M, Michalak A (2008) Applications of natural orbitals for chemical valence in a description of bonding in conjugated molecules. J Mol Mod 14:681–687CrossRefGoogle Scholar
  60. 60.
    Rong C, Zhao D, Zhou T, Liu S, Yu D, Liu S (2019) Homogeneous molecular systems are positively cooperative but charged molecular systems are negatively cooperative. J Phys Chem Lett 10:1716–1721CrossRefGoogle Scholar
  61. 61.
    Zhou T, Liu S, Yu D, Zhao D, Rong C, Liu S (2019) On the negative cooperativity of argon clusters containing one lithium cation or fluorine anion. Chem Phys Lett 716:192–198CrossRefGoogle Scholar
  62. 62.
    Rong C, Zhao D, Yu D, Liu S (2018) Quantification and origin of cooperativity: insights from density functional reactivity theory. Phys Chem Chem Phys 20:17990–17998CrossRefGoogle Scholar
  63. 63.
    Bader RF (2009) Bond paths are not chemical bonds. J Phys Chem A 113:10391–10396CrossRefGoogle Scholar
  64. 64.
    Macchi P, Proserpio DM, Sironi A (1998) Experimental electron density in a transition metal dimer: metal–metal and metal–ligand bonds. J Am Chem Soc 120:13429–13435CrossRefGoogle Scholar
  65. 65.
    Macchi P, Garlaschelli L, Martinengo S, Sironi A (1999) Charge density in transition metal clusters: supported vs unsupported meta– metal interactions. J Am Chem Soc 121:10428–10429CrossRefGoogle Scholar
  66. 66.
    Novozhilova IV, Volkov AV, Coppens P (2003) Theoretical analysis of the triplet excited state of the [Pt2(H2P2O5)4]4− ion and comparison with time-resolved X-ray and spectroscopic results. J Am Chem Soc 125:1079–1087CrossRefGoogle Scholar
  67. 67.
    Farrugia LJ, Senn HM (2010) Metal–metal and metal–ligand bonding at a QTAIM catastrophe: a combined experimental and theoretical charge density study on the alkylidyne cluster Fe3(μ-H)(μ-COMe)(CO) 10. J Phys Chem A 114:13418–13433CrossRefGoogle Scholar
  68. 68.
    Jana G, Pan S, Chattaraj PK (2017) Binding of small gas molecules by metal-bipyridyl monocationic complexes (Metal = Cu, Ag, Au) and possible bond activations therein. J Phys Chem A 121:3803–3817CrossRefGoogle Scholar
  69. 69.
    Jana G, Pan S, Merino G, Chattaraj PK (2017) MNgCCH (M = Cu, Ag, Au; Ng = Xe, Rn): the first set of compounds with M–Ng–C bonding motif. J Phys Chem A 121:6491–6499CrossRefGoogle Scholar
  70. 70.
    Jana G, Saha R, Pan S, Kumar A, Merino G, Chattaraj PK (2016) Noble gas binding ability of metal-bipyridine monocationic complexes (Metal = Cu, Ag, Au): a computational study. ChemistrySelect 1:5842–5849CrossRefGoogle Scholar
  71. 71.
    Pan S, Saha R, Mandal S, Chattaraj PK (2016) σ-Aromatic cyclic M 3 + (M = Cu, Ag, Au) clusters and their complexation with dimethyl imidazol-2-ylidene, pyridine, isoxazole, furan, noble gases and carbon monoxide. Phys Chem Chem Phys 18:11661–11676CrossRefGoogle Scholar
  72. 72.
    Cremer D, Kraka E (1984) Chemical bonds without bonding electron density—does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed 23:627–628CrossRefGoogle Scholar
  73. 73.
    Ziółkowski M, Grabowski SJ, Leszczynski J (2006) Cooperativity in hydrogen-bonded interactions: ab initio and “atoms in molecules” analyses. J Phys Chem A 110:6514–6521CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Center for Theoretical StudiesIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Fachbereich ChemiePhilipps-Universität MarburgMarburgGermany
  3. 3.Department of ChemistryIndian Institute of Technology BombayPowai, MumbaiIndia

Personalised recommendations