Advertisement

Effect of the alkyl substituent in NONOates derivatives on the reaction mechanism of NO liberation

  • Violeta Rangel-Galván
  • María Eugenia CastroEmail author
  • Jose Manuel Perez-Aguilar
  • Norma A. Caballero
  • Francisco Javier MeléndezEmail author
Regular Article
  • 65 Downloads
Part of the following topical collections:
  1. 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018)

Abstract

Nitric oxide (NO) is a small biological molecule dealing with several physiological processes. NO can be obtained from different donor compounds. In this work, an analysis of the reaction mechanism for the liberation of NO from a series of NONOates: 1,1-dimethyl-3-oxotriazan-2-olate (CH3)2N[N(O)NO] (1), 1,1-diethyl-3-oxotriazan-2-olate (CH2CH3)2N[N(O)NO] (2), 1,1-dipropyl-3-oxotriazan-2-olate (CH2CH2CH3)2 N[N(O)NO] (3), 1,1-dibutyl-3-oxotriazan-2-olate (CH2CH2CH2CH3)2N[N(O)NO] (4) and 1,1-dipenthyl-3-oxotriazan-2-olate (CH2CH2CH2CH2CH3)2N[N(O)NO] (5) is carried out. M06L/6-311++G(d,p) density functional theory calculations were performed for obtaining the geometries and energies of the involved species in the mechanism. Mechanism is proposed by protonation of 15, and then, their protonated tautomers are involved to obtain the intermediaries and transitions states. Tautomerization energies are found to be between 2.23 and 21.44 kcal mol−1 with respect to the lowest energy tautomer H1 in all NONOates structures. Finally, as products, the corresponding secondary amine and two molecules of NO are obtained. Geometry optimizations were carried out in aqueous solution using SMD. Current ΔG values take into account the thermochemical contributions of enthalpy and entropy at 298.15 K. The effect of substituent size on the dissociation energy barrier was analyzed finding similar values for dissociation of 15 NONOates. The NONOate 1 with smallest substituent has the lowest dissociation barrier of 4.78 kcal mol−1 and leads to most energetically stable products. As alkyl substituent is increased in size, the value of dissociation barrier is increased in 1.52.0 kcal mol−1 for 2–5 NONOates. Relative pka values and natural bond orbitals, NBO, are estimated using for the tautomers H5 where the protonation site has the most acid behavior causing the NO generation.

Keywords

NONOate derivatives DFT methods Tautomers Energy profile Dissociation energy Relative pka 

Notes

Acknowledgements

VRG thanks CONACYT-México for financial support (PhD fellowship No. 286497). Authors thank the Laboratorio Nacional de Supercómputo del Sureste de México (LNS-BUAP) of the CONACYT network of national laboratories, for the computer resources and support provided. Authors thank to VIEP-BUAP for the financial support, project: 100256733-VIEP2019, as well as the PRODEP Academic Group BUAP-CA-263 (SEP, Mexico).

Supplementary material

214_2019_2453_MOESM1_ESM.docx (3.2 mb)
Supplementary material 1 (DOCX 3231 kb)

References

  1. 1.
    Vimalraj S, Pichu S, Pankajam T, Dharanibalan K, Djonov V, Chatterjee S (2019) Nitric oxide regulates intussusceptive-like angiogenesis in wound repair in chicken embryo and transgenic zebrafish models. Nitric Oxide 82:48–58CrossRefGoogle Scholar
  2. 2.
    Oronsky B, Oronsky N, Cabrales P (2018) Platelet inhibitory effects of the Phase 3 anticancer and normal tissue cytoprotective agent, RRx-001. J Cell Mol Med 22(10):5076–5082CrossRefGoogle Scholar
  3. 3.
    Mughal A, Sun C, O’Rourke ST (2018) Activation of large conductance, calcium-activated potassium channels by nitric oxide mediates apelin-induced relaxation of isolated rat coronary arteries. J Pharmacol Exp Ther 366(2):265–273CrossRefGoogle Scholar
  4. 4.
    Sanna MD, Monti M, Casella L, Roggeri R, Galeotti N, Morbidelli L (2015) Neuronal effects of a nickel-piperazine/NO donor complex in rodents. Pharmacol Res 99:162–173CrossRefGoogle Scholar
  5. 5.
    Puglisi MP, Bradaric MJ, Pontikis J, Cabai J, Weyna T, Tednes P, Schretzman R, Rickert K, Cao Z, Andrei D (2018) Novel primary amine diazeniumdiolates—chemical and biological characterization. Drug Dev Res 79(3):136–143CrossRefGoogle Scholar
  6. 6.
    Fitzhugh AL, Keefer LK (2000) Diazeniumdiolates: pro- and antioxidant applications of the “NONOates”. Free Radic Biol Med 28(10):1463–1469CrossRefGoogle Scholar
  7. 7.
    Habrie JA, Klose JR, Wink DA, Keefer LK (1993) New nitric oxide-releasing zwitterions derived from polyamines. J Org Chem 58:1472–1476CrossRefGoogle Scholar
  8. 8.
    Davies KM, Wink DA, Saavedra JE, Keefer LK (2001) Chemistry of the diazeniumdiolates 2. Kinetics and mechanism of dissociation to nitric oxide in aqueous solution. J Am Chem Soc 123:5473–5481CrossRefGoogle Scholar
  9. 9.
    Taylor DK, Bytheway I, Barton DHR, Bayse CA, Hall MB (1995) Toward the generation of NO in biological systems. Theoretical studies of the N2O2 grouping. J Org Chem 60:435–444CrossRefGoogle Scholar
  10. 10.
    Dutton AS, Fukuto JM, Houk KN (2004) The mechanism of NO formation from the decomposition of dialkylamino diazeniumdiolates: density functional theory and CBS-QB3 predictions. Inorg Chem 43(3):1039–1045CrossRefGoogle Scholar
  11. 11.
    Dutton AS, Suhrada CP, Miranda KM, Wink DA, Fukuto JM, Houk KN (2006) Mechanism of pH-dependent decomposition of monoalkylamine diazeniumdiolates to form HNO and NO, deduced from the model compound methylamine diazeniumdiolate, density functional theory, and CBS-QB3 calculations. Inorg Chem 45(6):2448–2456CrossRefGoogle Scholar
  12. 12.
    Shaikh N, Valiev M, Lymar SV (2014) Decomposition of amino diazeniumdiolates (NONOates): molecular mechanisms. J Inorg Biochem 141:28–35CrossRefGoogle Scholar
  13. 13.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1–3):215–241CrossRefGoogle Scholar
  14. 14.
    Raghavachari K, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. 20. Basis set for correlated wave-functions. J Chem Phys 72:650–654CrossRefGoogle Scholar
  15. 15.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396CrossRefGoogle Scholar
  16. 16.
    Reed AE, Curtiss LA, Weinhold F (1998) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  17. 17.
    Pliego JR Jr, Riveros JM (2002) Theoretical calculation of pKa using the cluster-continuum model. J Phys Chem A 106:7434–7439CrossRefGoogle Scholar
  18. 18.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision B.01. Gaussian, Inc., WallingfordGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Violeta Rangel-Galván
    • 1
  • María Eugenia Castro
    • 2
    Email author
  • Jose Manuel Perez-Aguilar
    • 1
  • Norma A. Caballero
    • 3
  • Francisco Javier Meléndez
    • 1
    Email author
  1. 1.Lab. de Química Teórica, Centro de Investigación, Depto. de Fisicoquímica, Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.Centro de Química, Instituto de CienciasBenemérita Universidad Autónoma de PueblaPueblaMexico
  3. 3.Facultad de Ciencias BiológicasBenemérita Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations