Unravelling the reaction mechanism for the Claisen–Tishchenko condensation catalysed by Mn(I)-PNN complexes: a DFT study

Abstract

In this work, we study the potential catalytic role of previously identified Mn(I)-PNN complexes in the Claisen–Tishchenko reaction. An in-depth investigation of the reaction mechanism suggests that, after activation of the 16e pre-catalyst, a hydrogenated 18e active species is generated. Based on calculations, rate-limiting barriers in a range of ca. 15–20 kcal mol−1 are seen for a model process consisting in the esterification of acetaldehyde into ethyl acetate at 100 °C and 1 atm reaction conditions (in toluene solution). Our hypothesis is centred on the role of the Mn centre as the only active site involved in both elementary steps, namely hydride borrowing and C–O bond formation. During this C–O bond formation step, diastereoisomers (RN,R) and (RN,S) [or their enantiomeric pairs (SN,S) and (SN,R)] can be generated, with calculations showing a preference towards the (RN,R) pathway.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2

References

  1. 1.

    Otera J, Nishikido J (2010) Esterification: methods, reactions, and applications, 2nd edn. Wiley, New York

    Google Scholar 

  2. 2.

    Chirik P, Morris R (2015) Acc Chem Res 48:2495

    CAS  Article  Google Scholar 

  3. 3.

    Schrock RR, Osborn JA (1976) J Am Chem Soc 98:2134–2143

    CAS  Article  Google Scholar 

  4. 4.

    Tani K, Iseki A, Yamagata T (1999) Chem Commun. https://doi.org/10.1039/a905765j:1821-1822

    Article  Google Scholar 

  5. 5.

    Shen R, Chen T, Zhao Y, Qiu R, Zhou Y, Yin S, Wang X, Goto M, Han L-B (2011) J Am Chem Soc 133:17037–17044

    CAS  Article  Google Scholar 

  6. 6.

    Neumann KT, Klimczyk S, Burhardt MN, Bang-Andersen B, Skrydstrup T, Lindhardt AT (2016) ACS Catal 6:4710–4714

    CAS  Article  Google Scholar 

  7. 7.

    Richmond E, Moran J (2015) J Org Chem 80:6922–6929

    CAS  Article  Google Scholar 

  8. 8.

    Tokmic K, Fout AR (2016) J Am Chem Soc 138:13700–13705

    CAS  Article  Google Scholar 

  9. 9.

    Korytiaková E, Thiel NO, Pape F, Teichert JF (2017) Chem Commun 53:732–735

    Article  Google Scholar 

  10. 10.

    Brzozowska A, Azofra LM, Zubar V, Atodiresei I, Cavallo L, Rueping M, El-Sepelgy O (2018) ACS Catal 8:4103–4109

    CAS  Article  Google Scholar 

  11. 11.

    Das UK, Chakraborty S, Diskin-Posner Y, Milstein D (2018) Angew Chem 130:13632–13636

    Article  Google Scholar 

  12. 12.

    Glatz M, Stöger B, Himmelbauer D, Veiros LF, Kirchner K (2018) ACS Catal 8:4009–4016

    CAS  Article  Google Scholar 

  13. 13.

    Borghs JC, Lebedev Y, Rueping M, El-Sepelgy O (2019) Org Lett 21:70–74

    CAS  Article  Google Scholar 

  14. 14.

    Borghs JC, Azofra LM, Biberger T, Linnenberg O, Cavallo L, Rueping M, El-Sepelgy O ChemSusChem

  15. 15.

    Kumar A, Espinosa-Jalapa NA, Leitus G, Diskin-Posner Y, Avram L, Milstein D (2017) Angew Chem Int Ed 56:14992–14996

    CAS  Article  Google Scholar 

  16. 16.

    Espinosa-Jalapa NA, Kumar A, Leitus G, Diskin-Posner Y, Milstein D (2017) J Am Chem Soc 139:11722–11725

    CAS  Article  Google Scholar 

  17. 17.

    Jang YK, Krückel T, Rueping M, El-Sepelgy O (2018) Org Lett 20:7779–7783

    CAS  Article  Google Scholar 

  18. 18.

    Gorgas N, Kirchner K (2018) Acc Chem Res 51:1558–1569

    CAS  Article  Google Scholar 

  19. 19.

    Kallmeier F, Kempe R (2018) Angew Chem Int Ed 57:46–60

    CAS  Article  Google Scholar 

  20. 20.

    Luque-Urrutia JA, Solà M, Milstein D, Poater A (2019) J Am Chem Soc 141:2398–2403

    CAS  Article  Google Scholar 

  21. 21.

    Masdemont J, Luque-Urrutia JA, Gimferrer M, Milstein D, Poater A (2019) ACS Catal. https://doi.org/10.1021/acscatal.8b04175:1662-1669

    Article  Google Scholar 

  22. 22.

    Claisen L (1887) Ber Dtsch Chem Ges 20:646–650

    Article  Google Scholar 

  23. 23.

    Dzik WI, Gooßen LJ (2011) Angew Chem Int Ed 50:11047–11049

    CAS  Article  Google Scholar 

  24. 24.

    Tishchenko VE (1906) J Russ Phys Chem Soc 38:355–418

    Google Scholar 

  25. 25.

    Tishchenko VE (1906) J Russ Phys Chem Soc 38:482–540

    Google Scholar 

  26. 26.

    Simon M-O, Darses S (2010) Adv Synth Catal 352:305–308

    CAS  Article  Google Scholar 

  27. 27.

    Ogoshi S, Hoshimoto Y, Ohashi M (2010) Chem Commun 46:3354–3356

    CAS  Article  Google Scholar 

  28. 28.

    Hoshimoto Y, Ohashi M, Ogoshi S (2011) J Am Chem Soc 133:4668–4671

    CAS  Article  Google Scholar 

  29. 29.

    Tejel C, Ciriano MA, Passarelli V (2011) Chem A Eur J 17:91–95

    CAS  Article  Google Scholar 

  30. 30.

    Morris SA, Gusev DG (2017) Angew Chem Int Ed 56:6228–6231

    CAS  Article  Google Scholar 

  31. 31.

    Kadassery KJ, MacMillan SN, Lacy DC (2018) Dalton Trans 47:12652–12655

    CAS  Article  Google Scholar 

  32. 32.

    Das UK, Ben-David Y, Leitus G, Diskin-Posner Y, Milstein D (2019) ACS Catal 9:479–484

    CAS  Article  Google Scholar 

  33. 33.

    Zubar V, Lebedev Y, Azofra LM, Cavallo L, El-Sepelgy O, Rueping M (2018) Angew Chem Int Ed 57:13439–13443

    CAS  Article  Google Scholar 

  34. 34.

    Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    CAS  Article  Google Scholar 

  35. 35.

    Grimme S (2006) J Comput Chem 27:1787–1799

    CAS  Article  Google Scholar 

  36. 36.

    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    CAS  Article  Google Scholar 

  37. 37.

    Kudin KN, Scuseria GE, Cancès E (2002) J Chem Phys 116:8255–8261

    CAS  Article  Google Scholar 

  38. 38.

    Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comput Chem 17:49–56

    CAS  Article  Google Scholar 

  39. 39.

    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094

    CAS  Article  Google Scholar 

  40. 40.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09 (revision D.01). Gaussian, Inc., Wallingford CT

    Google Scholar 

  41. 41.

    Eisenstein O, Crabtree RH (2013) New J Chem 37:21–27

    CAS  Article  Google Scholar 

  42. 42.

    Kelly CP, Cramer CJ, Truhlar DG (2005) J Chem Theory Comput 1:1133–1152

    CAS  Article  Google Scholar 

  43. 43.

    Kelly CP, Cramer CJ, Truhlar DG (2006) J Phys Chem B 110:16066–16081

    CAS  Article  Google Scholar 

  44. 44.

    Bryantsev VS, Diallo MS, Goddard Iii WA (2008) J Phys Chem B 112:9709–9719

    CAS  Article  Google Scholar 

  45. 45.

    Nguyen DH, Trivelli X, Capet F, Paul J-F, Dumeignil F, Gauvin RM (2017) ACS Catal 7:2022–2032

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the King Abdullah University of Science and Technology (KAUST). Gratitude is also due to the KAUST Supercomputing Laboratory using the supercomputer Shaheen II for providing the computational resources. LMA is an ULPGC Postdoc Fellow, and thanks Universidad de Las Palmas de Gran Canaria (ULPGC). LMA also acknowledges the Scientific Committee of ESPA 2018 Conference for selecting him as speaker.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Luis Miguel Azofra or Luigi Cavallo.

Ethics declarations

Conflict of interest

Authors declare no competing financial interests.

Additional information

Dedicated to Prof. Dr. Otilia Mó and Prof. Dr. Manuel Yáñez on occasion of their 70th birthdays.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles derived from the 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 153 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azofra, L.M., Cavallo, L. Unravelling the reaction mechanism for the Claisen–Tishchenko condensation catalysed by Mn(I)-PNN complexes: a DFT study. Theor Chem Acc 138, 64 (2019). https://doi.org/10.1007/s00214-019-2449-7

Download citation

Keywords

  • Manganese complexes
  • PNN ligands
  • Homogeneous catalysis
  • Esters
  • DFT