Advertisement

QTAIM method for accelerated prediction of band gaps in perovskites

  • Maria A. Syzgantseva
  • Olga A. SyzgantsevaEmail author
Regular Article
  • 126 Downloads

Abstract

Efficient prediction of electronic properties of semiconductors is a cornerstone in the rational design of materials for various technological applications, including optoelectronics, photovoltaics and catalysis. Topological analysis of electron density is a powerful tool to unravel the correlations between the composition of isostructural compounds and their electronic properties. Resorting to this approach in theory or in experiment requires an elaboration of descriptors connecting the composition with the electronic structure characteristics. In the current work, the application of chemical topology for prediction of band gaps is illustrated for the model systems of perovskite compounds. The correlations between the band gaps and the electron density at the bond critical points are established, enabling the construction of composition–property maps. The procedure applying PBE-based descriptors for evaluation of the band gaps, calculated with resources-demanding methods, such as hybrid functionals or GW, is outlined. Finally, it is demonstrated how topological indices can be used to predict the band gaps for yet unsynthesized materials on the basis of available experimental data for isostructural compounds.

Keywords

Topological analysis Electronic structure prediction QTAIM descriptors Band gap Energy harvesting materials Perovskites 

Notes

Acknowledgements

We acknowledge PRACE for awarding us access to Curie at GENCI@CEA, France and Irene at GENCI@CEA, France. We are grateful to CSC center (Finland) for providing HPC resources.

References

  1. 1.
    Bader RF (1990) Atoms in molecules: a quantum theory, The International Series of Monographs on Chemistry, vol 22. Clarendon Press, OxfordGoogle Scholar
  2. 2.
    Bader RFW (1991) Chem Rev 91(5):893CrossRefGoogle Scholar
  3. 3.
    Bertini L, Cargnoni F, Gatti C (2007) Theor Chem Acc 117(5):847CrossRefGoogle Scholar
  4. 4.
    Ormeci A, Simon A, Grin Y (2010) Angew Chem Int Ed 49(47):8997CrossRefGoogle Scholar
  5. 5.
    Matthies O, Grin Y, Kohout M (2017) ChemistrySelect 2(25):7659CrossRefGoogle Scholar
  6. 6.
    Grin Y, Fedorchuk A, Faria RJ, Wagner FR (2018) Crystals 8:2CrossRefGoogle Scholar
  7. 7.
    Saleh G, Ceresoli D, Macetti G, Gatti C (2019) Computational Materials Discovery. The Royal Society of Chemistry, London, pp 117–175Google Scholar
  8. 8.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
  9. 9.
    Contreras-García J, Calatayud M, Piquemal JP, Recio J (2012) Comput Theor Chem 998:193CrossRefGoogle Scholar
  10. 10.
    Contreras-García J, Cardenas C (2017) J Mol Model 23(9):271CrossRefGoogle Scholar
  11. 11.
    Tognetti V, Joubert L (2014) Phys Chem Chem Phys 16:14539CrossRefGoogle Scholar
  12. 12.
    Tognetti V, Joubert L, Adamo C (2010) J Chem Phys 132(21):211101CrossRefGoogle Scholar
  13. 13.
    Seriani N (2010) J Phys Condens Matter 22(25):255502CrossRefGoogle Scholar
  14. 14.
    Kang CJ (2017) Int J Quantum Chem 118(11):e25548CrossRefGoogle Scholar
  15. 15.
    Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Nature 499:316CrossRefGoogle Scholar
  16. 16.
    Correa-Baena JP, Saliba M, Buonassisi T, Grätzel M, Abate A, Tress W, Hagfeldt A (2017) Science 358(6364):739CrossRefGoogle Scholar
  17. 17.
    Turren-Cruz SH, Hagfeldt A, Saliba M (2018) Science 362(6413):449CrossRefGoogle Scholar
  18. 18.
    Kim YH, Cho H, Heo JH, Kim TS, Myoung N, Lee CL, Im SH, Lee TW (2015) Adv Mater 27(7):1248CrossRefGoogle Scholar
  19. 19.
    Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos LM, Credgington D, Hanusch F, Bein T, Snaith HJ, Friend RH (2014) Nat Nanotechnol 27(9):687CrossRefGoogle Scholar
  20. 20.
    Sun J, Wu J, Tong X, Lin F, Wang Y, Wang ZM (2018) Adv Sci 5(5):1700780CrossRefGoogle Scholar
  21. 21.
    Xu YF, Yang MZ, Chen BX, Wang XD, Chen HY, Kuang DB, Su CY (2017) J Am Chem Soc 139(16):5660CrossRefGoogle Scholar
  22. 22.
    Volonakis G, Giustino F (2018) Appl Phys Lett 112(24):243901CrossRefGoogle Scholar
  23. 23.
    Luaña V, Costales A, Pendás AM (1997) Phys Rev B 55(7):4285CrossRefGoogle Scholar
  24. 24.
    Luaña V, Costales A, Pendás AM, Pueyo L (1999) J Phys Condens Matter 11(33):6329CrossRefGoogle Scholar
  25. 25.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865CrossRefGoogle Scholar
  26. 26.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) J Phys Condens Matter 21(39):395502CrossRefGoogle Scholar
  27. 27.
    Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli MB, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Corso AD, de Gironcoli S, Delugas P, Jr RAD, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko HY, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen NL, Nguyen HV, Otero-de-la Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S (2017) J Phys Condens Matter 29(46):465901CrossRefGoogle Scholar
  28. 28.
    Rappe AM, Rabe KM, Kaxiras E, Joannopoulos JD (1990) Phys Rev B 41:1227CrossRefGoogle Scholar
  29. 29.
    Vanderbilt D (1990) Phys Rev B 41:7892CrossRefGoogle Scholar
  30. 30.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  31. 31.
    Adamo C, Barone V (1999) J Chem Phys 110(13):6158CrossRefGoogle Scholar
  32. 32.
    Marini A, Hogan C, Grüning M, Varsano D (2009) Comput Phys Commun 180(8):1392CrossRefGoogle Scholar
  33. 33.
    Corso AD (2014) Comput Mater Sci 95:337CrossRefGoogle Scholar
  34. 34.
  35. 35.
    Prandini G, Marrazzo A, Castelli IE, Mounet N, Marzari N (2018) Comput Mater 4:72CrossRefGoogle Scholar
  36. 36.
    Blochl PE (1994) Phys Rev B 50(24):17953CrossRefGoogle Scholar
  37. 37.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  38. 38.
    Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) J Phys Condens Matter 22(25):253202CrossRefGoogle Scholar
  39. 39.
    Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71:035109CrossRefGoogle Scholar
  40. 40.
    Otero-de-la Roza A, Blanco M, Martín Pendás A, Luaña V (2009) Comput Phys Commun 180(1):157CrossRefGoogle Scholar
  41. 41.
    Otero-de-la Roza A, Johnson ER, Luaña V (2014) Comput Phys Commun 185(3):1007CrossRefGoogle Scholar
  42. 42.
    Momma K, Izumi F (2011) J Appl Crystallogr 44:1272CrossRefGoogle Scholar
  43. 43.
    Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ (2014) Energy Environ Sci 7(3):982CrossRefGoogle Scholar
  44. 44.
    Sutton RJ, Eperon GE, Miranda L, Parrott ES, Kamino BA, Patel JB, Horantner MT, Johnston MB, Haghighirad AA, Moore DT, Snaith HJ (2016) Adv Energy Mater 6(8):1502458CrossRefGoogle Scholar
  45. 45.
    Filip MR, Hillman S, Haghighirad AA, Snaith HJ, Giustino F (2016) J Phys Chem Lett 7(13):2579CrossRefGoogle Scholar
  46. 46.
    Hao F, Stoumpos CC, Cao DH, Chang RPH, Kanatzidis MG (2014) Nat Photon 8(6):489CrossRefGoogle Scholar
  47. 47.
    McClure ET, Ball MR, Windl W, Woodward PM (2016) Chem Mater 28(5):1348CrossRefGoogle Scholar
  48. 48.
    Slavney AH, Hu T, Lindenberg AM, Karunadasa HI (2016) J Am Chem Soc 138(7):2138CrossRefGoogle Scholar
  49. 49.
    Volonakis G, Filip MR, Haghighirad AA, Sakai N, Wenger B, Snaith HJ, Giustino F (2016) J Phys Chem Lett 7(7):1254CrossRefGoogle Scholar
  50. 50.
    De Marco N, Zhou H, Chen Q, Sun P, Liu Z, Meng L, Yao EP, Liu Y, Schiffer A, Yang Y (2016) Nano Lett 16(2):1009CrossRefGoogle Scholar
  51. 51.
    Fang Y, Dong Q, Yuan Y, Huang J (2015) Nat Photon 9:679CrossRefGoogle Scholar
  52. 52.
    Jang DM, Kim DH, Park K, Park J, Lee JW, Song JK (2016) J Mater Chem C 4:10625CrossRefGoogle Scholar
  53. 53.
    Koh TM, Fu K, Fang Y, Chen S, Sum TC, Mathews N, Mhaisalkar SG, Boix PP, Baikie T (2014) J Phys Chem C 118(30):16458CrossRefGoogle Scholar
  54. 54.
    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben PA, Mohammed OF, Sargent EH, Bakr OM (2015) Science 347(6221):519CrossRefGoogle Scholar
  55. 55.
    Brivio F, Walker AB, Walsh A (2013) APL Mater 1(4):042111CrossRefGoogle Scholar
  56. 56.
    Frost JM, Butler KT, Brivio F, Hendon CH, van Schilfgaarde M, Walsh A (2014) Nano Lett 14(5):2584CrossRefGoogle Scholar
  57. 57.
    Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin MK, Grätzel M, De Angelis F (2014) Nano Lett 14(6):3608CrossRefGoogle Scholar
  58. 58.
    Baniecki JD, Yamazaki T, Ricinschi D, Van Overmeere Q, Aso H, Miyata Y, Yamada H, Fujimura N, Maran R, Anazawa T, Valanoor N, Imanaka Y (2017) Sci Rep 7:41725CrossRefGoogle Scholar
  59. 59.
    Jenkins S (2002) J Phys Condens Matter 14(43):10251CrossRefGoogle Scholar
  60. 60.
    Ayers PW, Jenkins S (2015) Comput Theor Chem 1053:112. (Special Issue: Understanding structure and reactivity from topology and beyond) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Quantum Mechanics and Molecular Structure, Department of ChemistryMoscow State University M.V. LomonosovMoscowRussian Federation
  2. 2.Laboratory of Molecular Simulation, Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL Valais), EPFL SB ISIC LSMOSionSwitzerland

Personalised recommendations