Structural, bonding, and superhalogen properties of Au4X −/04 (X = F, Cl, Br, and I) clusters

Abstract

The structural, bonding, and superhalogen properties of Au4X −/04 (X = F, Cl, Br, and I) clusters were investigated by density functional theory calculations. Our results found that Au4F4, Au4Cl4, and Au4Br 4 have similar cyclic arrangements, spectral, and superhalogen features, and Au4I4 has a D4h symmetric planar ring-like structure, while Au4X4 neutrals all adopt a D2d symmetric quasi-planar eight-membered ring. Bond lengths, Wiberg bond orders, molecular orbital, ELF, and PDOS analyses suggest that the Au–I and Au–Au bonding in Au4X −/04 are weak involving both covalent and ionic contributions. The nucleus-independent chemical shift, aromatic stabilization energy, and multicenter bond index calculations suggest that Au4I4 has significant aromaticity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Lu X, Tuan H-Y, Korgel BA, Xia Y (2008) Chem Eur J 14:1584

    CAS  Article  Google Scholar 

  2. 2.

    Kang SK, Yoon SK, Kim Y (2001) Org Lett 3:2697

    CAS  Article  Google Scholar 

  3. 3.

    Pyykkö P (2004) Angew Chem Int Ed 43:4412

    Article  Google Scholar 

  4. 4.

    Li Q, Li H, Li R, Jing B, Liu Z, Li W, Luan F, Cheng J, Gong B, Sun J (2011) J Phys Chem A 115:2853

    CAS  Article  Google Scholar 

  5. 5.

    Kiran B, Li X, Zhai HJ, Cui LF, Wang LS (2004) Angew Chem Int Ed 43:2125

    CAS  Article  Google Scholar 

  6. 6.

    Pyykkö P (1988) Chem Rev 88:563

    Article  Google Scholar 

  7. 7.

    Wang LS (2010) Phys Chem Chem Phys 12:8694

    CAS  Article  Google Scholar 

  8. 8.

    Schulz A, Hargittai M (2001) Chem Eur J 7:3657

    CAS  Article  Google Scholar 

  9. 9.

    Hargittai M, Schulz A, Reffy B, Kolonits M (2001) J Am Chem Soc 123:1449

    CAS  Article  Google Scholar 

  10. 10.

    Koirala P, Willis M, Kiran B, Kandalam AK, Jena P (2010) J Phys Chem C 114:16018

    CAS  Article  Google Scholar 

  11. 11.

    Okabayashi T, Yamazaki E, Tsukamoto K, Tanimoto M (2003) J Mol Spectrosc 220:155

    CAS  Article  Google Scholar 

  12. 12.

    Craciun R, Picone D, Long RT, Li S, Dixon DA, Peterson KA, Christe KO (2010) Inorg Chem 49:1056

    CAS  Article  Google Scholar 

  13. 13.

    Li H, Li Q, Li R, Li W, Cheng J (2011) J Chem Phys 135:074304

    Article  Google Scholar 

  14. 14.

    Li X (2014) J Comput Chem 35:923

    CAS  Article  Google Scholar 

  15. 15.

    Evans CJ, Gerry MCL (2000) J Am Chem Soc 122:1560

    CAS  Article  Google Scholar 

  16. 16.

    Laerdahl JK, Saue T Jr, Fægri K (1997) Theor Chem Acc 97:177

    CAS  Article  Google Scholar 

  17. 17.

    Evans CJ, Gerry MC (2000) J Mol Spectrosc 203:105

    CAS  Article  Google Scholar 

  18. 18.

    Compton RN (1978) J Chem Phys 68:2023

    CAS  Article  Google Scholar 

  19. 19.

    Graudejus O, Elder SH, Lucier GM, Shen C, Bartlett N (1999) Inorg Chem 38:2503

    CAS  Article  Google Scholar 

  20. 20.

    Lucier GM, Shen C, Elder SH (1998) Inorg Chem 37:3829

    CAS  Article  Google Scholar 

  21. 21.

    Riedel S, Kaupp MC (2009) Chem Rev 45:10497

    Google Scholar 

  22. 22.

    Riedel S, Kaupp M (2006) Inorg Chem 45:1228

    CAS  Article  Google Scholar 

  23. 23.

    Timakov AA, Prusakov VN, Drobyshevskii YV (1986) Dokl Akad Nauk SSSR 21:125

    Google Scholar 

  24. 24.

    Wang YL, Wang XB, Xing XP, Wei F, Li J, Wang LS (2010) J Phys Chem A 114:11244

    CAS  Article  Google Scholar 

  25. 25.

    Liu HT, Xiong XG, Dau PD, Wang YL, Li J, Wang LS (2011) Chem Sci 2:2101

    CAS  Article  Google Scholar 

  26. 26.

    Lin J, Zhang S, Guan W, Yang G, Ma Y (2018) J Am Chem Soc 140:9545

    CAS  Article  Google Scholar 

  27. 27.

    Rabilloud F (2012) J Comput Chem 33:2083

    CAS  Article  Google Scholar 

  28. 28.

    Zhou Z-J, Hu Y-F (2012) Z Naturforsch 67a:99

    Google Scholar 

  29. 29.

    Dore EM, Lyon JT (2016) J Clust Sci 27:1365

    CAS  Article  Google Scholar 

  30. 30.

    Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter Mater Phys 37:785

    CAS  Article  Google Scholar 

  31. 31.

    Becke AD (1993) J Chem Phys 98:5648

    CAS  Article  Google Scholar 

  32. 32.

    Peterson KA, Shepler BC, Figgen D, Stoll H (2006) J Phys Chem A 110:13877

    CAS  Article  Google Scholar 

  33. 33.

    Peterson KA, Puzzarini C (2005) Theor Chem Acc 114:283

    CAS  Article  Google Scholar 

  34. 34.

    Dunning TH Jr (1989) J Chem Phys 90:1007

    CAS  Article  Google Scholar 

  35. 35.

    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    CAS  Article  Google Scholar 

  36. 36.

    Lv J, Wang YC, Zhu L, Ma YM (2012) J Chem Phys 137:084104

    Article  Google Scholar 

  37. 37.

    Lu S-J, Wu L-S, Lin F (2018) Comput. Theor. Chem. 1139:102

    CAS  Article  Google Scholar 

  38. 38.

    Lu S-J, Wu L-S, Lin F (2018) Chem Phys Lett 707:108

    CAS  Article  Google Scholar 

  39. 39.

    Lu S-J (2018) Chem Phys Lett 713:58

    CAS  Article  Google Scholar 

  40. 40.

    Lu S-J, Xu H-G, Xu X-L, Zheng W-J (2017) J Phys Chem C 121:11851

    CAS  Article  Google Scholar 

  41. 41.

    Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Article  Google Scholar 

  42. 42.

    Adamo C, Barone V (1999) J Chem Phys 110:6158

    CAS  Article  Google Scholar 

  43. 43.

    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    CAS  Article  Google Scholar 

  44. 44.

    Lu T, Chen FW (2012) J Comput Chem 33:580

    Article  Google Scholar 

  45. 45.

    Lu T, Chen FW (2012) J Theor Comput Chem 11:163

    CAS  Article  Google Scholar 

  46. 46.

    Lu T, Chen FW (2012) Acta Phys Chim Sin 28:1

    Google Scholar 

  47. 47.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Peterson KA, Nakatsuji H, Caricato M, Li X (2009) Gaussian 09, Revision A.02. Gaussian Inc, Wallingford

    Google Scholar 

  48. 48.

    Tozer DJ, Handy NC (1998) J Chem Phys 109:10180

    CAS  Article  Google Scholar 

  49. 49.

    Akola J, Manninen M, Häkkinen H, Landman U, Li X, Wang LS (1999) Phys Rev B Condens Matter Mater Phys 60:297

    Article  Google Scholar 

  50. 50.

    Berzinsh U, Gustafsson M, Hanstorp D, Klinkmüller A, Ljungblad U, Mårtensson-Pendrill A-M (1995) Phys Rev A 51:231

    CAS  Article  Google Scholar 

  51. 51.

    Reynard LM, Evans CJ, Gerry MCL (2001) J Mol Spectrosc 205:344

    CAS  Article  Google Scholar 

  52. 52.

    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397

    CAS  Article  Google Scholar 

  53. 53.

    Ibrahim BS, Pattabhi V (2016) Sci China Chem 59:1270

    Article  Google Scholar 

  54. 54.

    Pauling L (1932) J Am Chem Soc 54:3570

    CAS  Article  Google Scholar 

  55. 55.

    Lewars E (2007) Computational chemistry—introduction to the theory and applications of molecular and quantum mechanics, 2nd edn. Kluwer Academic Publishers, New York, p P307

    Google Scholar 

  56. 56.

    Giambiagi M, Giambiagi MSD, Mundim KC (1990) Struct Chem 1:423

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2018BB040), Open Funds of Beijing National Laboratory for Molecular Sciences (Grant No. BNLMS201804), and research start-up funds (Doctoral Science Foundation, Grant No. XY18BS02) of Heze University.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sheng-Jie Lu or Li-Shun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 8359 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Wu, L. & Lin, F. Structural, bonding, and superhalogen properties of Au4X −/04 (X = F, Cl, Br, and I) clusters. Theor Chem Acc 138, 51 (2019). https://doi.org/10.1007/s00214-019-2442-1

Download citation

Keywords

  • Gold halides
  • Superhalogen
  • Aromaticity