Structural, bonding, and superhalogen properties of Au4X 4 −/0 (X = F, Cl, Br, and I) clusters

  • Sheng-Jie LuEmail author
  • Li-Shun WuEmail author
  • Feng Lin
Regular Article


The structural, bonding, and superhalogen properties of Au4X 4 −/0 (X = F, Cl, Br, and I) clusters were investigated by density functional theory calculations. Our results found that Au4F4, Au4Cl4, and Au4Br 4 have similar cyclic arrangements, spectral, and superhalogen features, and Au4I4 has a D4h symmetric planar ring-like structure, while Au4X4 neutrals all adopt a D2d symmetric quasi-planar eight-membered ring. Bond lengths, Wiberg bond orders, molecular orbital, ELF, and PDOS analyses suggest that the Au–I and Au–Au bonding in Au4X 4 −/0 are weak involving both covalent and ionic contributions. The nucleus-independent chemical shift, aromatic stabilization energy, and multicenter bond index calculations suggest that Au4I4 has significant aromaticity.


Gold halides Superhalogen Aromaticity 



This work was supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2018BB040), Open Funds of Beijing National Laboratory for Molecular Sciences (Grant No. BNLMS201804), and research start-up funds (Doctoral Science Foundation, Grant No. XY18BS02) of Heze University.

Supplementary material

214_2019_2442_MOESM1_ESM.doc (8.2 mb)
Supplementary material 1 (DOC 8359 kb)


  1. 1.
    Lu X, Tuan H-Y, Korgel BA, Xia Y (2008) Chem Eur J 14:1584CrossRefGoogle Scholar
  2. 2.
    Kang SK, Yoon SK, Kim Y (2001) Org Lett 3:2697CrossRefGoogle Scholar
  3. 3.
    Pyykkö P (2004) Angew Chem Int Ed 43:4412CrossRefGoogle Scholar
  4. 4.
    Li Q, Li H, Li R, Jing B, Liu Z, Li W, Luan F, Cheng J, Gong B, Sun J (2011) J Phys Chem A 115:2853CrossRefGoogle Scholar
  5. 5.
    Kiran B, Li X, Zhai HJ, Cui LF, Wang LS (2004) Angew Chem Int Ed 43:2125CrossRefGoogle Scholar
  6. 6.
    Pyykkö P (1988) Chem Rev 88:563CrossRefGoogle Scholar
  7. 7.
    Wang LS (2010) Phys Chem Chem Phys 12:8694CrossRefGoogle Scholar
  8. 8.
    Schulz A, Hargittai M (2001) Chem Eur J 7:3657CrossRefGoogle Scholar
  9. 9.
    Hargittai M, Schulz A, Reffy B, Kolonits M (2001) J Am Chem Soc 123:1449CrossRefGoogle Scholar
  10. 10.
    Koirala P, Willis M, Kiran B, Kandalam AK, Jena P (2010) J Phys Chem C 114:16018CrossRefGoogle Scholar
  11. 11.
    Okabayashi T, Yamazaki E, Tsukamoto K, Tanimoto M (2003) J Mol Spectrosc 220:155CrossRefGoogle Scholar
  12. 12.
    Craciun R, Picone D, Long RT, Li S, Dixon DA, Peterson KA, Christe KO (2010) Inorg Chem 49:1056CrossRefGoogle Scholar
  13. 13.
    Li H, Li Q, Li R, Li W, Cheng J (2011) J Chem Phys 135:074304CrossRefGoogle Scholar
  14. 14.
    Li X (2014) J Comput Chem 35:923CrossRefGoogle Scholar
  15. 15.
    Evans CJ, Gerry MCL (2000) J Am Chem Soc 122:1560CrossRefGoogle Scholar
  16. 16.
    Laerdahl JK, Saue T Jr, Fægri K (1997) Theor Chem Acc 97:177CrossRefGoogle Scholar
  17. 17.
    Evans CJ, Gerry MC (2000) J Mol Spectrosc 203:105CrossRefGoogle Scholar
  18. 18.
    Compton RN (1978) J Chem Phys 68:2023CrossRefGoogle Scholar
  19. 19.
    Graudejus O, Elder SH, Lucier GM, Shen C, Bartlett N (1999) Inorg Chem 38:2503CrossRefGoogle Scholar
  20. 20.
    Lucier GM, Shen C, Elder SH (1998) Inorg Chem 37:3829CrossRefGoogle Scholar
  21. 21.
    Riedel S, Kaupp MC (2009) Chem Rev 45:10497Google Scholar
  22. 22.
    Riedel S, Kaupp M (2006) Inorg Chem 45:1228CrossRefGoogle Scholar
  23. 23.
    Timakov AA, Prusakov VN, Drobyshevskii YV (1986) Dokl Akad Nauk SSSR 21:125Google Scholar
  24. 24.
    Wang YL, Wang XB, Xing XP, Wei F, Li J, Wang LS (2010) J Phys Chem A 114:11244CrossRefGoogle Scholar
  25. 25.
    Liu HT, Xiong XG, Dau PD, Wang YL, Li J, Wang LS (2011) Chem Sci 2:2101CrossRefGoogle Scholar
  26. 26.
    Lin J, Zhang S, Guan W, Yang G, Ma Y (2018) J Am Chem Soc 140:9545CrossRefGoogle Scholar
  27. 27.
    Rabilloud F (2012) J Comput Chem 33:2083CrossRefGoogle Scholar
  28. 28.
    Zhou Z-J, Hu Y-F (2012) Z Naturforsch 67a:99Google Scholar
  29. 29.
    Dore EM, Lyon JT (2016) J Clust Sci 27:1365CrossRefGoogle Scholar
  30. 30.
    Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter Mater Phys 37:785CrossRefGoogle Scholar
  31. 31.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  32. 32.
    Peterson KA, Shepler BC, Figgen D, Stoll H (2006) J Phys Chem A 110:13877CrossRefGoogle Scholar
  33. 33.
    Peterson KA, Puzzarini C (2005) Theor Chem Acc 114:283CrossRefGoogle Scholar
  34. 34.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  35. 35.
    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358CrossRefGoogle Scholar
  36. 36.
    Lv J, Wang YC, Zhu L, Ma YM (2012) J Chem Phys 137:084104CrossRefGoogle Scholar
  37. 37.
    Lu S-J, Wu L-S, Lin F (2018) Comput. Theor. Chem. 1139:102CrossRefGoogle Scholar
  38. 38.
    Lu S-J, Wu L-S, Lin F (2018) Chem Phys Lett 707:108CrossRefGoogle Scholar
  39. 39.
    Lu S-J (2018) Chem Phys Lett 713:58CrossRefGoogle Scholar
  40. 40.
    Lu S-J, Xu H-G, Xu X-L, Zheng W-J (2017) J Phys Chem C 121:11851CrossRefGoogle Scholar
  41. 41.
    Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401CrossRefGoogle Scholar
  42. 42.
    Adamo C, Barone V (1999) J Chem Phys 110:6158CrossRefGoogle Scholar
  43. 43.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  44. 44.
    Lu T, Chen FW (2012) J Comput Chem 33:580CrossRefGoogle Scholar
  45. 45.
    Lu T, Chen FW (2012) J Theor Comput Chem 11:163CrossRefGoogle Scholar
  46. 46.
    Lu T, Chen FW (2012) Acta Phys Chim Sin 28:1Google Scholar
  47. 47.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Peterson KA, Nakatsuji H, Caricato M, Li X (2009) Gaussian 09, Revision A.02. Gaussian Inc, WallingfordGoogle Scholar
  48. 48.
    Tozer DJ, Handy NC (1998) J Chem Phys 109:10180CrossRefGoogle Scholar
  49. 49.
    Akola J, Manninen M, Häkkinen H, Landman U, Li X, Wang LS (1999) Phys Rev B Condens Matter Mater Phys 60:297CrossRefGoogle Scholar
  50. 50.
    Berzinsh U, Gustafsson M, Hanstorp D, Klinkmüller A, Ljungblad U, Mårtensson-Pendrill A-M (1995) Phys Rev A 51:231CrossRefGoogle Scholar
  51. 51.
    Reynard LM, Evans CJ, Gerry MCL (2001) J Mol Spectrosc 205:344CrossRefGoogle Scholar
  52. 52.
    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397CrossRefGoogle Scholar
  53. 53.
    Ibrahim BS, Pattabhi V (2016) Sci China Chem 59:1270CrossRefGoogle Scholar
  54. 54.
    Pauling L (1932) J Am Chem Soc 54:3570CrossRefGoogle Scholar
  55. 55.
    Lewars E (2007) Computational chemistry—introduction to the theory and applications of molecular and quantum mechanics, 2nd edn. Kluwer Academic Publishers, New York, p P307Google Scholar
  56. 56.
    Giambiagi M, Giambiagi MSD, Mundim KC (1990) Struct Chem 1:423CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringHeze UniversityHezeChina

Personalised recommendations