Skip to main content
Log in

Understanding the sequence of the electronic flow along the HCN/CNH isomerization within a bonding evolution theory quantum topological framework

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The sequence of electronic flow rearrangement, as described in terms of electron pair distribution, driving the HCN/CNH isomerization is revisited within the framework of bonding evolution theory approach as provided by the application of Thom’s elementary catastrophe theory to the changes, along the intrinsic reaction coordinate, of the gradient vector field of the electron localization function (ELF). Results provides a unique description of the evolution of the molecular rearrangement in terms of seven structural stability domains featuring six bifurcations, i.e., HCN: 7-FFFUUF-0: CNH, which provide a more detailed rationalization for the recent observation for unusual features concerning the electronic reaction force and force constant profiles of this process. Indeed, it is also revealed that the extremes of the electronic reaction flux profile (i.e., the negative of the instantaneous change of the chemical potential along the reaction path) are associated with the key relevant catastrophes, a fact that highlights the relevance that such a perturbative-based reactivity descriptor exhibits in connection with the study of abrupt changes in the gradient field of the ELF along a given reaction path, and hence, in the interpretation of the electronic activity along the course of chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pearson PK, Schaefer HF, Wahlgren U (1975) Potential-energy surface for model unimolecular reaction HNC–HCN. J Chem Phys 62:350–354. https://doi.org/10.1063/1.430492

    Article  CAS  Google Scholar 

  2. Fan LY, Ziegler T (1992) Nonlocal density functional theory as a practical tool in calculations on transition-states and activation-energies—applications to elementary reaction steps in organic-chemistry. J Am Chem Soc 114:10890–10897. https://doi.org/10.1021/ja00053a027

    Article  CAS  Google Scholar 

  3. Gray SK, Miller WH, Yamaguchi Y, Schaefer HF (1980) Reaction-path Hamiltonian—tunneling effects in the unimolecular isomerization HNC–HCN. J Chem Phys 73:2733–2739. https://doi.org/10.1063/1.440494

    Article  CAS  Google Scholar 

  4. Lee TJ, Rendell AP (1991) The structure and energetics of the HCN -HNC transition-state. Chem Phys Lett 177:491–497. https://doi.org/10.1016/0009-2614(91)90073-i

    Article  CAS  Google Scholar 

  5. Fan L, Ziegler T (1990) The application of density functional theory to the optimization of transition-state structures. 1. Organic migration reactions. J Chem Phys 92:3645–3652. https://doi.org/10.1063/1.457820

    Article  CAS  Google Scholar 

  6. Peric M, Mladenovic M, Peyerimhoff SD, Buenker RJ (1983) Ab initio study of the isomerization HNC–HCN. 1. Ab initio calculation of the hnc reversible hcn potential surface and the corresponding energy-levels. Chem Phys 82:317–336. https://doi.org/10.1016/0301-0104(83)85237-9

    Article  CAS  Google Scholar 

  7. Peric M, Mladenovic M, Peyerimhoff SD, Buenker RJ (1984) Ab initio study of the HNC–HCN isomerization. 2. Calculation of the isomerization rate-constant. Chem Phys 86:85–103. https://doi.org/10.1016/0301-0104(84)85158-7

    Article  CAS  Google Scholar 

  8. Wilhelm MJ, Martinez-Nunez E, Gonzalez-Vazquez J, Vazquez SA, Smith JM, Dai HL (2017) Is photolytic production a viable source of HCN and HNC in astrophysical environments? A laboratory-based feasibility study of methyl cyanoformate. Astrophys J 849:15. https://doi.org/10.3847/1538-4357/aa8ea7

    Article  CAS  Google Scholar 

  9. Makhnev VY, Kyuberis AA, Zobov NF, Lodi L, Tennyson J, Polyansky OL (2018) High accuracy ab initio calculations of rotational-vibrational levels of the HCN/HNC system. J Phys Chem A 122:1326–1343. https://doi.org/10.1021/acsjpca.7b10483

    Article  CAS  PubMed  Google Scholar 

  10. Glarborg P, Marshall P (2017) Importance of the hydrogen isocyanide isomer in modeling hydrogen cyanide oxidation in combustion. Energy Fuels 31:2156–2163. https://doi.org/10.1021/acs.energyfuels.6b02085

    Article  CAS  Google Scholar 

  11. Ishida K, Morokuma K, Komornicki A (1977) Intrinsic reaction coordinate—an ab initio calculation for HNC–HCN and H-+CH4–CH4+H. J Chem Phys 66:2153–2156. https://doi.org/10.1063/1.434152

    Article  CAS  Google Scholar 

  12. Bockelee-Morvan D, Lis DC, Wink JE, Despois D, Crovisier J, Bachiller R, Benford DJ, Biver N, Colom P, Davies JK, Gerard E, Germain B, Houde M, Mehringer D, Moreno R, Paubert G, Phillips TG, Rauer H (2000) New molecules found in comet C/1995 O1 (Hale-Bopp)—investigating the link between cometary and interstellar material. Astron Astrophys 353:1101–1114

    CAS  Google Scholar 

  13. Hirota T, Yamamoto S, Mikami H, Ohishi M (1998) Abundances of HCN and HNC in dark cloud cores. Astrophys J 503:717–728. https://doi.org/10.1086/306032

    Article  CAS  Google Scholar 

  14. Meier DS, Turner JL (2005) Spatially resolved chemistry in nearby galaxies. I. The center of IC 342. Astrophys J 618:259–280. https://doi.org/10.1086/426499

    Article  CAS  Google Scholar 

  15. Graninger DM, Herbst E, Oberg KI, Vasyunin AI (2014) The HNC/HCN ratio in star-forming regions. Astrophys J 787:74. https://doi.org/10.1088/0004-637x/787/1/74

    Article  Google Scholar 

  16. Jursic BS (1996) Density functional theory and ab initio study of CH3NC and HNC isomerization. Chem Phys Lett 256:213–219. https://doi.org/10.1016/0009-2614(96)00407-1

    Article  CAS  Google Scholar 

  17. Jursic BS (1997) Quadratic complete basis set ab initio and hybrid density functional theory studies of the stability of HNC, HCN, H2NCH and HNCH2, their isomerizations, and the hydrogen insertion reactions for HCN and HNC. J Chem Soc Far Trans 93:2355–2359. https://doi.org/10.1039/a701165b

    Article  CAS  Google Scholar 

  18. Zou WL, Sexton T, Kraka E, Freindorf M, Cremer D (2016) A new method for describing the mechanism of a chemical reaction based on the unified reaction valley approach. J Chem Theory Comput 12:650–663. https://doi.org/10.1021/acs.jctc.5b01098

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen TL, Baraban JH, Ruscic B, Stanton JF (2015) On the HCN–HNC energy difference. J Phys Chem A 119:10929–10934. https://doi.org/10.1021/acs.jpca.5b08406

    Article  CAS  PubMed  Google Scholar 

  20. Jana G, Pan S, Osorio E, Zhao LL, Merino G, Chattaraj PK (2018) Cyanide-isocyanide isomerization: stability and bonding in noble gas inserted metal cyanides (metal = Cu, Ag, Au). Phys Chem Chem Phys 20:18491–18502. https://doi.org/10.1039/c8cp02837k

    Article  CAS  PubMed  Google Scholar 

  21. Lauvergnat D, Simon A, Maitre P (2001) Valence bond curve-crossing model of the 1,2-hydrogen shift in HCN and isovalent systems. Chem Phys Lett 350:345–350. https://doi.org/10.1016/s0009-2614(01)01300-8

    Article  CAS  Google Scholar 

  22. Bechtel HA, Steeves AH, Wong BM, Field RW (2008) Evolution of chemical bonding during HCN reversible arrow HNC isomerization as revealed through nuclear quadrupole hyperfine structure. Angew Chem Int Ed 47:2969–2972. https://doi.org/10.1002/anie.200705399

    Article  CAS  Google Scholar 

  23. Liao XL, Wu W, Mo YR, Zhang QN (2003) VB studies on bonding features of HNC <-> HCN. Sci China B-Chem 46:361–370. https://doi.org/10.1360/02yb0207

    Article  CAS  Google Scholar 

  24. Diaz S, Brela MZ, Gutierrez-Oliva S, Toro-Labbe A, Michalak A (2017) ETS-NOCV decomposition of the reaction force: the HCN/CNH isomerization reaction assisted by water. J Comput Chem 38:2076–2087. https://doi.org/10.1002/jcc.24856

    Article  CAS  PubMed  Google Scholar 

  25. Gutierrez-Oliva S, Diaz S, Toro-Labbe A, Lane P, Murray JS, Politzer P (2014) Revisiting the seemingly straightforward hydrogen cyanide/hydrogen isocyanide isomerisation. Mol Phys 112:349–354. https://doi.org/10.1080/00268976.2013.819452

    Article  CAS  Google Scholar 

  26. Rao SV (2000) Mechanism of some 1:2 hydrogen transfer reactions through bond variation indices. J Comput Chem 21:1283–1291

    Article  CAS  Google Scholar 

  27. Politzer P, Toro-Labbe A, Gutierrez-Oliva S, Murray JS (2012) Perspectives on the reaction force. In: Sabin JR, Brandas EJ (eds) Advances in quantum chemistry, vol 64, pp 189–209

    Google Scholar 

  28. Politzer P, Reimers JR, Murray JS, Toro-Labbe A (2010) Reaction force and its link to diabatic analysis: a unifying approach to analyzing chemical reactions. J Phys Chem Lett 1:2858–2862. https://doi.org/10.1021/jz101135y

    Article  CAS  Google Scholar 

  29. Toro-Labbe A, Gutierrerez-Oliva S, Murray JS, Politzer P (2007) A new perspective on chemical and physical processes: the reaction force. Mol Phys 105:2619–2625. https://doi.org/10.1080/00268970701604663

    Article  CAS  Google Scholar 

  30. Rincon E, Toro-Labbe A (2007) Reaction force and electron localization function analysis of the metal chelation process in Mg(II)-thymine complex. Chem Phys Lett 438:93–98. https://doi.org/10.1016/j.cplett.2007.02.007

    Article  CAS  Google Scholar 

  31. Politzer P, Toro-Labbe A, Gutierrez-Oliva S, Herrera B, Jaque P, Concha MC, Murray JS (2005) The reaction force: three key points along an intrinsic reaction coordinate. J Chem Sci (Bangalore, India) 117:467–472. https://doi.org/10.1007/bf02708350

    Article  CAS  Google Scholar 

  32. Fukui K (1981) The path of chemical-reactions—the IRC approach. Acc Chem Res 14:363–368. https://doi.org/10.1021/ar00072a001

    Article  CAS  Google Scholar 

  33. Gonzalez C, Schlegel HB (1990) Reaction-path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527. https://doi.org/10.1021/j100377a021

    Article  CAS  Google Scholar 

  34. Gonzalez C, Schlegel HB (1991) Improved algorithms for reaction-path following—higher-order implicit algorithms. J Chem Phys 95:5853–5860. https://doi.org/10.1063/1.461606

    Article  CAS  Google Scholar 

  35. Hratchian HP, Schlegel HB (2005) Chapter 10. Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In: Dykstra CE, Frenking G, Kim KS, Scuseria G (eds) Theory and applications of computational chemistry: the first 40 years. Elsevier, Amsterdam

    Google Scholar 

  36. Domingo LR, Rios-Gutierrez M, Perez P, Chamorro E (2016) Understanding the 2n+2n reaction mechanism between a carbenoid intermediate and CO2. Mol Phys 114:1374–1391. https://doi.org/10.1080/00268976.2016.1142127

    Article  CAS  Google Scholar 

  37. Lopez L, Ruiz P, Castro M, Quijano J, Duque-Norena M, Perez P, Chamorro E (2015) Understanding the thermal dehydrochlorination reaction of 1-chlorohexane. Revealing the driving bonding pattern at the planar catalytic reaction center. RSC Adv 5:62946–62956. https://doi.org/10.1039/c5ra10152b

    Article  CAS  Google Scholar 

  38. Chamorro E, Ruiz P, Quijano J, Luna D, Restrepo L, Zuluaga S, Duque-Norena M (2014) Understanding the thermal 1 s, 5 s hydrogen shift isomerization of ocimene. J Mol Mod 20:2390. https://doi.org/10.1007/s00894-014-2390-6

    Article  CAS  Google Scholar 

  39. Rincon E, Zuloaga F, Chamorro E (2013) Global and local chemical reactivities of mutagen X and simple derivatives. J Mol Mod 19:2573–2582. https://doi.org/10.1007/s00894-013-1799-7

    Article  CAS  Google Scholar 

  40. Domingo LR, Chamorro E, Perez P (2010) Understanding the mechanism of non-polar Diels–Alder reactions. A comparative ELF analysis of concerted and stepwise diradical mechanisms. Org Biomol Chem 8:5495–5504. https://doi.org/10.1039/c0ob00563k

    Article  CAS  PubMed  Google Scholar 

  41. Domingo LR, Chamorro E, Perez P (2010) Understanding the high reactivity of the azomethine ylides in 3+2 cycloaddition reactions. Lett Org Chem 7:432–439

    Article  CAS  Google Scholar 

  42. Domingo LR, Chamorro E, Perez P (2008) An understanding of the electrophilic/nucleophilic behavior of electro-deficient 2,3-disubstituted 1,3-butadienes in polar Diels–Alder reactions. A density functional theory study. J Phys Chem A 112:4046–4053. https://doi.org/10.1021/jp711704m

    Article  CAS  PubMed  Google Scholar 

  43. Domingo LR, Chamorro E, Perez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J Org Chem 73:4615–4624. https://doi.org/10.1021/jo800572a

    Article  CAS  PubMed  Google Scholar 

  44. Chamorro E, Rincon E (2019) Unraveling the sequence of the electronic flow along the water-assisted ring-opening reaction in mutagen MX. Theor Chem Acc 138:3. https://doi.org/10.1007/s00214-018-2384-z

    Article  CAS  Google Scholar 

  45. Savin A, Nesper R, Wengert S, Fassler TF (1997) ELF: the electron localization function. Angew Chem Int Ed 36:1809–1832

    Article  Google Scholar 

  46. Grin Y, Savin A, Silvi B (2014) The ELF perspective of chemical bonding. In: Frenking G, Shaik S (ed) The chemical bond: fundamentals and models. Wiley-VCH Verlag GmbH & Co. KGaA, vol 1, pp 345–382

  47. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403. https://doi.org/10.1063/1.458517

    Article  CAS  Google Scholar 

  48. Savin A, Becke AD, Flad J, Nesper R, Preuss H, Vonschnering HG (1991) A new look at electron localization. Angew Chem Int Ed 30:409–412. https://doi.org/10.1002/anie.199104091

    Article  Google Scholar 

  49. Krokidis X, Noury S, Silvi B (1997) Characterization of elementary chemical processes by catastrophe theory. J Phys Chem A 101:7277–7282. https://doi.org/10.1021/jp9711508

    Article  CAS  Google Scholar 

  50. Andres J, Gonzalez-Navarrete P, Safont VS, Silvi B (2017) Curly arrows, electron flow, and reaction mechanisms from the perspective of the bonding evolution theory. Phys Chem Chem Phys 19:29031–29046. https://doi.org/10.1039/c7cp06108k

    Article  CAS  PubMed  Google Scholar 

  51. Andres J, Berski S, Silvi B (2016) Curly arrows meet electron density transfers in chemical reaction mechanisms: from electron localization function (ELF) analysis to valence-shell electron-pair repulsion (VSEPR) inspired interpretation. Chem Commun (Cambridge, UK) 52:8183–8195. https://doi.org/10.1039/c5cc09816e

    Article  CAS  Google Scholar 

  52. Andres J, Gracia L, Gonzalez-Navarrete P, Safont VS (2015) Chemical structure and reactivity by means of quantum chemical topology analysis. Comput Theor Chem 1053:17–30. https://doi.org/10.1016/j.comptc.2014.10.010

    Article  CAS  Google Scholar 

  53. Andres J, Gonzalez-Navarrete P, Safont VS (2014) Unraveling reaction mechanisms by means of quantum chemical topology analysis. Int J Quantum Chem 114:1239–1252. https://doi.org/10.1002/qua.24665

    Article  CAS  Google Scholar 

  54. Viciano I, Gonzalez-Navarrete P, Andres J, Marti S (2015) Joint use of bonding evolution theory and QM/MM hybrid method for understanding the hydrogen abstraction mechanism via cytochrome P450 aromatase. J Chem Theory Comput 11:1470–1480. https://doi.org/10.1021/ct501030q

    Article  CAS  PubMed  Google Scholar 

  55. Gillet N, Chaudret R, Contreras-Garcia J, Yang WT, Silvi B, Piquemal JP (2012) Coupling quantum interpretative techniques: another look at chemical mechanisms in organic reactions. J Chem Theory Comput 8:3993–3997. https://doi.org/10.1021/ct300234g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Polo V, Andres J (2007) Lewis acid and substituent effects on the molecular mechanism for the nazarov reaction of penta-1,4-dien-3-one and derivatives. A topological analysis based on the combined use of electron localization function and catastrophe theory. J Chem Theory Comput 3:816–823. https://doi.org/10.1021/ct7000304

    Article  CAS  PubMed  Google Scholar 

  57. Gilmore R (1993) Book catastrophe theory for scientists and engineers. Dover Publications, Mineola

    Google Scholar 

  58. Zeeman EC (1976) Catastrophe theory. Sci Am 234:65. https://doi.org/10.1038/scientificamerican0476-65

    Article  Google Scholar 

  59. Woodcock AER, Poston A (1974) Book Geometrical Study of Elementary Catastrophes. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  60. Thom R (1994) Book structural stability and morphogenesis: an outline of a general theory of models. Westview Press, London

    Google Scholar 

  61. Savin A (2005) The electron localization function (ELF) and its relatives: interpretations and difficulties. J Mol Struct-Theochem 727:127–131. https://doi.org/10.1016/j.theochem.2005.02.034

    Article  CAS  Google Scholar 

  62. Savin A (2005) On the significance of ELF basins. J Chem Sci (Bangalore, India) 117:473–475. https://doi.org/10.1007/bf02708351

    Article  CAS  Google Scholar 

  63. Ponec R, Chaves J (2005) Electron pairing and chemical bonds. Electron fluctuation and pair localization in ELF domains. J Comput Chem 26:1205–1213. https://doi.org/10.1002/jcc.20257

    Article  CAS  PubMed  Google Scholar 

  64. Chamorro E, Fuentealba P, Savin A (2003) Electron probability distribution in AIM and ELF basins. J Comput Chem 24:496–504. https://doi.org/10.1002/jcc.10242

    Article  CAS  PubMed  Google Scholar 

  65. Adjieufack AI, Ndassa IM, Patouossa I, Mbadcam JK, Safont VS, Oliva M, Andres J (2017) On the outside looking in: rethinking the molecular mechanism of 1,3-dipolar cycloadditions from the perspective of bonding evolution theory. The reaction between cyclic nitrones and ethyl acrylate. Phys Chem Chem Phys 19:18288-18302. https://doi.org/10.1039/c7cp01016h

    Article  CAS  PubMed  Google Scholar 

  66. Berski S, Andres J, Silvi B, Domingo LR (2003) The joint use of catastrophe theory and electron localization function to characterize molecular mechanisms. A density functional study of the Diels–Alder reaction between ethylene and 1,3-butadiene. J Phys Chem A 107:6014–6024. https://doi.org/10.1021/jp030272z

    Article  CAS  Google Scholar 

  67. Lee CT, Yang WT, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  68. Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  69. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular-orbital methods. 20. Basis set for correlated wave-functions. J Chem Phys 72:650–654. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  70. McLean AD, Chandler GS (1980) Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z = 11-18. J Chem Phys 72:5639–5648. https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  71. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PV (1983) Efficient diffuse function-augmented basis sets for anion calculations. Iii. The 3-21+G basis set for first-row elements, Li–F. J Comput Chem 4:294–301. https://doi.org/10.1002/jcc.540040303

    Article  CAS  Google Scholar 

  72. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, petrone A, Henderson T, Ranasinhe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas Ö, Foresman JB, Fox DJ; Gaussian, Inc., Wallingford CT (2017)

  73. Schlegel HB (1982) Optimization of equilibrium geometries and transition structures. J Comput Chem 3:214–218. https://doi.org/10.1002/jcc.540030212

    Article  CAS  Google Scholar 

  74. Schlegel HB (1995) Geometry optimization on potential energy surfaces. In: Ryarkony DR (ed) Modern electronic structure theory. World Scientific Publishing, Singapore, vol 2

    Chapter  Google Scholar 

  75. Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput Chem 23:597–604. https://doi.org/10.1016/s0097-8485(99)00039-x

    Article  CAS  Google Scholar 

  76. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  77. Ceron ML, Echegaray E, Gutierrez-Oliva S, Herrera B, Toro-Labbe A (2011) The reaction electronic flux in chemical reactions. Sci China Chem 54:1982–1988. https://doi.org/10.1007/s11426-011-4447-z

    Article  CAS  Google Scholar 

  78. Echegaray E, Toro-Labbe A (2008) Reaction electronic flux: a new concept to get insights into reaction mechanisms. Study of model symmetric nucleophilic substitutions. J Phys Chem A 112:11801–11807. https://doi.org/10.1021/jp805225e

    Article  CAS  PubMed  Google Scholar 

  79. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity—density functional viewpoint. J Chem Phys 68:3801–3807. https://doi.org/10.1063/1.436185

    Article  CAS  Google Scholar 

  80. Parr RG, Yang W (1989) Book density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  81. Matute RA, Perez P, Chamorro E, Villegas-Escobar N, Cortes-Arriagada D, Herrera B, Gutierrez-Oliva S, Toro-LabbE A (2018) Reaction electronic flux perspective on the mechanism of the Zimmerman Di-pi-methane rearrangement. J Org Chem 83:5969–5974. https://doi.org/10.1021/acs.joc.8b00499

    Article  CAS  PubMed  Google Scholar 

  82. Morell C, Tognetti V, Bignon E, Dumont E, Hernandez-Haro N, Herrera B, Grand A, Gutierrez-Oliva S, Joubert L, Toro-Labbe A, Chermette H (2015) Insights into the chemical meanings of the reaction electronic flux. Theor Chem Acc 134:1–7. https://doi.org/10.1007/s00214-015-1730-7

    Article  CAS  Google Scholar 

  83. Martinez-Araya JI, Toro-Labbe A (2015) Reaction electronic flux as a fluctuation of relative interatomic electronic populations. J Phys Chem C 119:3040–3049. https://doi.org/10.1021/jp508297r

    Article  CAS  Google Scholar 

  84. Silvi B (2002) The synaptic order: a key concept to understand multicenter bonding. J Mol Struct 614:3–10. https://doi.org/10.1016/s0022-2860(02)00231-4

    Article  CAS  Google Scholar 

  85. Domingo LR, Rios-Gutierrez M, Silvi B, Perez P (2018) The mysticism of pericyclic reactions: a contemporary rationalisation of organic reactivity based on electron density analysis. Eur J Org Chem. https://doi.org/10.1002/ejoc.201701350

    Article  Google Scholar 

Download references

Acknowledgements

EC acknowledges the continuous support provided by Fondo Nacional de Ciencia y Tecnología (FONDECYT-Chile) through Project No. 1181582. ER is grateful for the explicit support to this research from the Facultad de Ciencias and Instituto de Ciencias Químicas at Univ Austral de Chile.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eduardo Chamorro or Elizabeth Rincón.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamorro, E., Prado, Y., Duque-Noreña, M. et al. Understanding the sequence of the electronic flow along the HCN/CNH isomerization within a bonding evolution theory quantum topological framework. Theor Chem Acc 138, 60 (2019). https://doi.org/10.1007/s00214-019-2440-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2440-3

Keywords

Navigation