Exploring the structural and electronic properties of double-Fe atom-doped Si20 cluster by quantum chemical calculations

Abstract

We carried out a quantum chemical investigation on the structural and electronic properties of double-Fe atom-doped Si20 cluster by density functional theory calculations. The results showed that anionic, neutral, and cationic Fe2Si20 have similar Frank–Kasper structures, constructed by Si4 rhombuses, Si5 pentagons, and Si6 hexagons. More interestingly, Fe2Si20 shows superhalogen properties. The Fe–Fe interactions in Fe2Si −/0/+20 (the meaning of the acronym: Fe2Si −/0/+20 refers to Fe2Si20 cluster with a negative charge, neutral state, and a positive charge, respectively.) are weak, further verified by constant electronic charge densities, molecular orbital, and PDOS analyses. The bonding interactions between atoms are in the sequence of Si–Si > Fe–Si > Fe–Fe. Moreover, Fe2Si20, Fe2Si20, and Fe2Si20+ are all significantly aromatic.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Berkdemir C, Gülseren O (2009) Phys Rev B Condens Matter Mater Phys 80:115334

    Article  Google Scholar 

  2. 2.

    Liu ZF, Wang XQ, Cai JT, Zhu HJ (2015) J Phys Chem C 119:1517

    CAS  Article  Google Scholar 

  3. 3.

    Hagelberg F, Xiao C, Lester WA (2003) Phys Rev B 67:035426

    Article  Google Scholar 

  4. 4.

    Uchida N, Miyazaki T, Kanayama T (2006) Phys Rev B 74:205427

    Article  Google Scholar 

  5. 5.

    Bogdanoff P, Stellmach D, Gabriel O, Stannowski B, Schlatmann R, van de Krol R, Fiechter S (2016) Energy Technol 4:230

    CAS  Article  Google Scholar 

  6. 6.

    Reis CL, Martins JL, Pacheco JM (2007) Phys Rev B 76:233406

    Article  Google Scholar 

  7. 7.

    Claridge SA, Castleman AW, Khanna SN, Murray CB, Sen A, Weiss PS (2009) ACS Nano 3:244

    CAS  Article  Google Scholar 

  8. 8.

    Willand A, Gramzow M, Ghasemi A, Genovese L, Deutsch T, Reuter K, Goedecker S (2010) Phys Rev B 81:201405(R)

    Article  Google Scholar 

  9. 9.

    Wang J, Liu Y, Li Y-C (2010) Phys Chem Chem Phys 12:11428

    CAS  Article  Google Scholar 

  10. 10.

    Wang J, Liu JH (2008) J Phys Chem A 112:4562

    CAS  Article  Google Scholar 

  11. 11.

    Palagin D, Teufl T, Reuter K (2013) J Phys Chem C 117:16182

    CAS  Article  Google Scholar 

  12. 12.

    Zhao R-N, Han J-G, Duan Y-H (2014) Thin Solid Films 556:571

    CAS  Article  Google Scholar 

  13. 13.

    Xu HG, Kong XY, Deng XJ, Zhang ZG, Zheng WJ (2014) J Chem Phys 140:024308

    Article  Google Scholar 

  14. 14.

    Lu S-J, Wu L-S, Lin F (2018) Chem Phys Lett 707:108

    CAS  Article  Google Scholar 

  15. 15.

    Lu S-J, Wu L-S, Lin F (2018) Chem Phys Lett 709:60

    CAS  Article  Google Scholar 

  16. 16.

    Lu S-J (2018) Chem Phys Lett 713:58

    CAS  Article  Google Scholar 

  17. 17.

    Li X, Jin L, Zheng Y, Wang Q, Dong C (2017) J Alloy Compd 706:495

    CAS  Article  Google Scholar 

  18. 18.

    Wang X, He Z, Xiong S, Wu X (2014) J Phys Chem C 118:2222

    CAS  Article  Google Scholar 

  19. 19.

    Kuznetsov AR, Gornostyrev YN, Ershov NV, Lukshina VA, Chernenkov YP, Fedorov VI (2007) Phys Solid State 49:2290

    CAS  Article  Google Scholar 

  20. 20.

    Qin J, Gu T, Bian X (2004) J Phys Condens Matter 16:4753

    CAS  Article  Google Scholar 

  21. 21.

    Lakshantha WJ, Dhoubhadel MS, Reinert T, McDaniel FD, Rout B (2015) Nucl Instrum Methods B 365:114

    CAS  Article  Google Scholar 

  22. 22.

    Liang X-Q, Deng X-J, Lu S-J, Huang X-M, Zhao J-J, Xu H-G, Zheng W-J, Zeng XC (2017) J Phys Chem C 121:7037

    CAS  Article  Google Scholar 

  23. 23.

    Simon KV, Tulub AV (2015) J Struct Chem 56:1

    CAS  Article  Google Scholar 

  24. 24.

    Phi ND, Trung NT, Janssens E, Ngan VT (2016) Chem Phys Lett 643:103

    CAS  Article  Google Scholar 

  25. 25.

    Chauhan V, Abreu MB, Reber AC, Khanna SN (2015) Phys Chem Chem Phys 17:15718

    CAS  Article  Google Scholar 

  26. 26.

    Bista D, Reber AC, Chauhan V, Khanna SN (2018) Chem Phys Lett 706:113

    CAS  Article  Google Scholar 

  27. 27.

    Ji WX, Luo CL (2012) Int J Quantum Chem 112:2525

    CAS  Article  Google Scholar 

  28. 28.

    Huang XM, Xu HG, Lu SJ, Su Y, King RB, Zhao JJ, Zheng WJ (2014) Nanoscale 6:14617

    CAS  Article  Google Scholar 

  29. 29.

    Hagelberg F, Xiao C, Lester WA (2003) J Phys Rev B Condens Matter Mater Phys 67:035426

    Article  Google Scholar 

  30. 30.

    Singh AK, Briere TM, Kumar V, Kawazoe Y (2003) Phys Rev Lett 91:146802

    Article  Google Scholar 

  31. 31.

    Robles R, Khanna S, Castleman A (2008) Phys Rev B Condens Matter Mater Phys 77:235441

    Article  Google Scholar 

  32. 32.

    Iwasa T, Nakajima A (2012) J Phys Chem C 116:14071

    CAS  Article  Google Scholar 

  33. 33.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Peterson KA, Nakatsuji H, Caricato M, Li X (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford

    Google Scholar 

  34. 34.

    Lv J, Wang YC, Zhu L, Ma YM (2012) J Chem Phys 137:084104

    Article  Google Scholar 

  35. 35.

    Lu S-J, Xu X-L, Xu H-G, Zheng W-J (2018) J Chem Phys 148:244306

    Article  Google Scholar 

  36. 36.

    Lu S-J, Xu X-L, Cao G-J, Xu H-G, Zheng W-J (2018) J Phys Chem C 122:2391

    CAS  Article  Google Scholar 

  37. 37.

    Lu S-J, Xu X-L, Cao G-J, Xu H-G, Zheng W-J (2018) J Chem Phys 149:174314

    Article  Google Scholar 

  38. 38.

    Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter Mater Phys 37:785

    CAS  Article  Google Scholar 

  39. 39.

    Becke AD (1993) J Chem Phys 98:5648

    CAS  Article  Google Scholar 

  40. 40.

    Lu S-J, Xu H-G, Xu X-L, Zheng W-J (2017) J Phys Chem C 121:11851

    CAS  Article  Google Scholar 

  41. 41.

    Lu S-J, Xu X-L, Feng G, Xu H-G, Zheng W-J (2016) J Phys Chem C 120:25628

    CAS  Article  Google Scholar 

  42. 42.

    Lu SJ, Cao GJ, Xu XL, Xu HG, Zheng WJ (2016) Nanoscale 8:19769

    CAS  Article  Google Scholar 

  43. 43.

    Balabanov NB, Peterson KA (2005) J Chem Phys 123:064107

    Article  Google Scholar 

  44. 44.

    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    CAS  Article  Google Scholar 

  45. 45.

    Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910

    CAS  Article  Google Scholar 

  46. 46.

    Scuseria GE, Schaefer HF (1989) J Chem Phys 90:3700

    CAS  Article  Google Scholar 

  47. 47.

    Tozer DJ, Handy NC (1998) J Chem Phys 109:10180

    CAS  Article  Google Scholar 

  48. 48.

    Berzinsh U, Gustafsson M, Hanstorp D, Klinkmüller A, Ljungblad U, Mårtensson-Pendrill AM (1995) Phys Rev A 51:231

    CAS  Article  Google Scholar 

  49. 49.

    Lu J, Nagase S (2003) Phys Rev Lett 90:115506

    Article  Google Scholar 

  50. 50.

    Purdum H, Montano PA, Shenoy GK, Morrison T (1982) Phys Rev B 25:4412

    CAS  Article  Google Scholar 

  51. 51.

    Wyckoff RWG (1963) Crystal Structures. Interscience, New York

    Google Scholar 

  52. 52.

    Robles R, Khanna SN (2009) J Chem Phys 130:164313

    CAS  Article  Google Scholar 

  53. 53.

    Xu H-G, Zhang Z-G, Feng Y, Yuan JY, Zhao YC, Zheng WJ (2010) Chem Phys Lett 487:204

    CAS  Article  Google Scholar 

  54. 54.

    Pham HT, Majumdar D, Leszczynski J, Nguyen MT (2017) Phys Chem Chem Phys 19:3115

    CAS  Article  Google Scholar 

  55. 55.

    Guliamov O, Kronik L, Jackson KA (2005) J Chem Phys 123:204312

    Article  Google Scholar 

  56. 56.

    Wu X, Liang X, Du Q, Zhao J, Chen M, Lin M, Wang J, Yin G, Ma L, King RB, von Issendorff B (2018) J Phys Condens Matter 30:354002

    Article  Google Scholar 

  57. 57.

    Rata I, Shvartsburg A, Horoi M, Frauenheim T, Siu KW, Jackson KA (2000) Phys Rev Lett 85:546

    CAS  Article  Google Scholar 

  58. 58.

    Zhu XL, Zeng XC, Lei YA, Pan B (2004) J Chem Phys 120:8985

    CAS  Article  Google Scholar 

  59. 59.

    Dietl T (2010) Nat Mater 9:965

    CAS  Article  Google Scholar 

  60. 60.

    Pauling L (1932) J Am Chem Soc 54:3570

    CAS  Article  Google Scholar 

  61. 61.

    Lewars E (2007) Computational chemistry-introduction to the theory and applications of molecular and quantum mechanics, 2nd edn. Kluwer Academic Publishers, New York, p 307

    Google Scholar 

  62. 62.

    Giambiagi M, de Giambiagi MS, Mundim KC (1990) Struct Chem 1:423

    CAS  Article  Google Scholar 

  63. 63.

    Lu T, Chen FW (2012) J Comput Chem 33:580

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2018BB040), Open Funds of Beijing National Laboratory for Molecular Sciences, China (Grant No. BNLMS201804), and research start-up funds (Doctoral Science Foundation, Grant No. XY18BS02) of Heze University, China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sheng-Jie Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, S. Exploring the structural and electronic properties of double-Fe atom-doped Si20 cluster by quantum chemical calculations. Theor Chem Acc 138, 48 (2019). https://doi.org/10.1007/s00214-019-2438-x

Download citation

Keywords

  • Doping effects
  • Superhalogen
  • Aromaticity
  • Quantum chemical calculations