Advertisement

Exploring the structural and electronic properties of double-Fe atom-doped Si20 cluster by quantum chemical calculations

  • Sheng-Jie LuEmail author
Regular Article
  • 88 Downloads

Abstract

We carried out a quantum chemical investigation on the structural and electronic properties of double-Fe atom-doped Si20 cluster by density functional theory calculations. The results showed that anionic, neutral, and cationic Fe2Si20 have similar Frank–Kasper structures, constructed by Si4 rhombuses, Si5 pentagons, and Si6 hexagons. More interestingly, Fe2Si20 shows superhalogen properties. The Fe–Fe interactions in Fe2Si 20 −/0/+ (the meaning of the acronym: Fe2Si 20 −/0/+ refers to Fe2Si20 cluster with a negative charge, neutral state, and a positive charge, respectively.) are weak, further verified by constant electronic charge densities, molecular orbital, and PDOS analyses. The bonding interactions between atoms are in the sequence of Si–Si > Fe–Si > Fe–Fe. Moreover, Fe2Si20, Fe2Si20, and Fe2Si20+ are all significantly aromatic.

Keywords

Doping effects Superhalogen Aromaticity Quantum chemical calculations 

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2018BB040), Open Funds of Beijing National Laboratory for Molecular Sciences, China (Grant No. BNLMS201804), and research start-up funds (Doctoral Science Foundation, Grant No. XY18BS02) of Heze University, China.

Supplementary material

214_2019_2438_MOESM1_ESM.doc (225 kb)
The Cartesian coordinates of the low-lying isomers of Fe2Si 20 −/0/+ are listed in the supplementary data. (DOC 225 kb)

References

  1. 1.
    Berkdemir C, Gülseren O (2009) Phys Rev B Condens Matter Mater Phys 80:115334CrossRefGoogle Scholar
  2. 2.
    Liu ZF, Wang XQ, Cai JT, Zhu HJ (2015) J Phys Chem C 119:1517CrossRefGoogle Scholar
  3. 3.
    Hagelberg F, Xiao C, Lester WA (2003) Phys Rev B 67:035426CrossRefGoogle Scholar
  4. 4.
    Uchida N, Miyazaki T, Kanayama T (2006) Phys Rev B 74:205427CrossRefGoogle Scholar
  5. 5.
    Bogdanoff P, Stellmach D, Gabriel O, Stannowski B, Schlatmann R, van de Krol R, Fiechter S (2016) Energy Technol 4:230CrossRefGoogle Scholar
  6. 6.
    Reis CL, Martins JL, Pacheco JM (2007) Phys Rev B 76:233406CrossRefGoogle Scholar
  7. 7.
    Claridge SA, Castleman AW, Khanna SN, Murray CB, Sen A, Weiss PS (2009) ACS Nano 3:244CrossRefGoogle Scholar
  8. 8.
    Willand A, Gramzow M, Ghasemi A, Genovese L, Deutsch T, Reuter K, Goedecker S (2010) Phys Rev B 81:201405(R)CrossRefGoogle Scholar
  9. 9.
    Wang J, Liu Y, Li Y-C (2010) Phys Chem Chem Phys 12:11428CrossRefGoogle Scholar
  10. 10.
    Wang J, Liu JH (2008) J Phys Chem A 112:4562CrossRefGoogle Scholar
  11. 11.
    Palagin D, Teufl T, Reuter K (2013) J Phys Chem C 117:16182CrossRefGoogle Scholar
  12. 12.
    Zhao R-N, Han J-G, Duan Y-H (2014) Thin Solid Films 556:571CrossRefGoogle Scholar
  13. 13.
    Xu HG, Kong XY, Deng XJ, Zhang ZG, Zheng WJ (2014) J Chem Phys 140:024308CrossRefGoogle Scholar
  14. 14.
    Lu S-J, Wu L-S, Lin F (2018) Chem Phys Lett 707:108CrossRefGoogle Scholar
  15. 15.
    Lu S-J, Wu L-S, Lin F (2018) Chem Phys Lett 709:60CrossRefGoogle Scholar
  16. 16.
    Lu S-J (2018) Chem Phys Lett 713:58CrossRefGoogle Scholar
  17. 17.
    Li X, Jin L, Zheng Y, Wang Q, Dong C (2017) J Alloy Compd 706:495CrossRefGoogle Scholar
  18. 18.
    Wang X, He Z, Xiong S, Wu X (2014) J Phys Chem C 118:2222CrossRefGoogle Scholar
  19. 19.
    Kuznetsov AR, Gornostyrev YN, Ershov NV, Lukshina VA, Chernenkov YP, Fedorov VI (2007) Phys Solid State 49:2290CrossRefGoogle Scholar
  20. 20.
    Qin J, Gu T, Bian X (2004) J Phys Condens Matter 16:4753CrossRefGoogle Scholar
  21. 21.
    Lakshantha WJ, Dhoubhadel MS, Reinert T, McDaniel FD, Rout B (2015) Nucl Instrum Methods B 365:114CrossRefGoogle Scholar
  22. 22.
    Liang X-Q, Deng X-J, Lu S-J, Huang X-M, Zhao J-J, Xu H-G, Zheng W-J, Zeng XC (2017) J Phys Chem C 121:7037CrossRefGoogle Scholar
  23. 23.
    Simon KV, Tulub AV (2015) J Struct Chem 56:1CrossRefGoogle Scholar
  24. 24.
    Phi ND, Trung NT, Janssens E, Ngan VT (2016) Chem Phys Lett 643:103CrossRefGoogle Scholar
  25. 25.
    Chauhan V, Abreu MB, Reber AC, Khanna SN (2015) Phys Chem Chem Phys 17:15718CrossRefGoogle Scholar
  26. 26.
    Bista D, Reber AC, Chauhan V, Khanna SN (2018) Chem Phys Lett 706:113CrossRefGoogle Scholar
  27. 27.
    Ji WX, Luo CL (2012) Int J Quantum Chem 112:2525CrossRefGoogle Scholar
  28. 28.
    Huang XM, Xu HG, Lu SJ, Su Y, King RB, Zhao JJ, Zheng WJ (2014) Nanoscale 6:14617CrossRefGoogle Scholar
  29. 29.
    Hagelberg F, Xiao C, Lester WA (2003) J Phys Rev B Condens Matter Mater Phys 67:035426CrossRefGoogle Scholar
  30. 30.
    Singh AK, Briere TM, Kumar V, Kawazoe Y (2003) Phys Rev Lett 91:146802CrossRefGoogle Scholar
  31. 31.
    Robles R, Khanna S, Castleman A (2008) Phys Rev B Condens Matter Mater Phys 77:235441CrossRefGoogle Scholar
  32. 32.
    Iwasa T, Nakajima A (2012) J Phys Chem C 116:14071CrossRefGoogle Scholar
  33. 33.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Peterson KA, Nakatsuji H, Caricato M, Li X (2009) Gaussian 09, Revision A.02. Gaussian, Inc., WallingfordGoogle Scholar
  34. 34.
    Lv J, Wang YC, Zhu L, Ma YM (2012) J Chem Phys 137:084104CrossRefGoogle Scholar
  35. 35.
    Lu S-J, Xu X-L, Xu H-G, Zheng W-J (2018) J Chem Phys 148:244306CrossRefGoogle Scholar
  36. 36.
    Lu S-J, Xu X-L, Cao G-J, Xu H-G, Zheng W-J (2018) J Phys Chem C 122:2391CrossRefGoogle Scholar
  37. 37.
    Lu S-J, Xu X-L, Cao G-J, Xu H-G, Zheng W-J (2018) J Chem Phys 149:174314CrossRefGoogle Scholar
  38. 38.
    Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter Mater Phys 37:785CrossRefGoogle Scholar
  39. 39.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  40. 40.
    Lu S-J, Xu H-G, Xu X-L, Zheng W-J (2017) J Phys Chem C 121:11851CrossRefGoogle Scholar
  41. 41.
    Lu S-J, Xu X-L, Feng G, Xu H-G, Zheng W-J (2016) J Phys Chem C 120:25628CrossRefGoogle Scholar
  42. 42.
    Lu SJ, Cao GJ, Xu XL, Xu HG, Zheng WJ (2016) Nanoscale 8:19769CrossRefGoogle Scholar
  43. 43.
    Balabanov NB, Peterson KA (2005) J Chem Phys 123:064107CrossRefGoogle Scholar
  44. 44.
    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358CrossRefGoogle Scholar
  45. 45.
    Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910CrossRefGoogle Scholar
  46. 46.
    Scuseria GE, Schaefer HF (1989) J Chem Phys 90:3700CrossRefGoogle Scholar
  47. 47.
    Tozer DJ, Handy NC (1998) J Chem Phys 109:10180CrossRefGoogle Scholar
  48. 48.
    Berzinsh U, Gustafsson M, Hanstorp D, Klinkmüller A, Ljungblad U, Mårtensson-Pendrill AM (1995) Phys Rev A 51:231CrossRefGoogle Scholar
  49. 49.
    Lu J, Nagase S (2003) Phys Rev Lett 90:115506CrossRefGoogle Scholar
  50. 50.
    Purdum H, Montano PA, Shenoy GK, Morrison T (1982) Phys Rev B 25:4412CrossRefGoogle Scholar
  51. 51.
    Wyckoff RWG (1963) Crystal Structures. Interscience, New YorkGoogle Scholar
  52. 52.
    Robles R, Khanna SN (2009) J Chem Phys 130:164313CrossRefGoogle Scholar
  53. 53.
    Xu H-G, Zhang Z-G, Feng Y, Yuan JY, Zhao YC, Zheng WJ (2010) Chem Phys Lett 487:204CrossRefGoogle Scholar
  54. 54.
    Pham HT, Majumdar D, Leszczynski J, Nguyen MT (2017) Phys Chem Chem Phys 19:3115CrossRefGoogle Scholar
  55. 55.
    Guliamov O, Kronik L, Jackson KA (2005) J Chem Phys 123:204312CrossRefGoogle Scholar
  56. 56.
    Wu X, Liang X, Du Q, Zhao J, Chen M, Lin M, Wang J, Yin G, Ma L, King RB, von Issendorff B (2018) J Phys Condens Matter 30:354002CrossRefGoogle Scholar
  57. 57.
    Rata I, Shvartsburg A, Horoi M, Frauenheim T, Siu KW, Jackson KA (2000) Phys Rev Lett 85:546CrossRefGoogle Scholar
  58. 58.
    Zhu XL, Zeng XC, Lei YA, Pan B (2004) J Chem Phys 120:8985CrossRefGoogle Scholar
  59. 59.
    Dietl T (2010) Nat Mater 9:965CrossRefGoogle Scholar
  60. 60.
    Pauling L (1932) J Am Chem Soc 54:3570CrossRefGoogle Scholar
  61. 61.
    Lewars E (2007) Computational chemistry-introduction to the theory and applications of molecular and quantum mechanics, 2nd edn. Kluwer Academic Publishers, New York, p 307Google Scholar
  62. 62.
    Giambiagi M, de Giambiagi MS, Mundim KC (1990) Struct Chem 1:423CrossRefGoogle Scholar
  63. 63.
    Lu T, Chen FW (2012) J Comput Chem 33:580CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringHeze UniversityHezeChina

Personalised recommendations