Skip to main content

Theoretical determination of the OH-initiated oxidation rate constants of \({\alpha ,\omega }\)-dialkoxyfluoropolyethers

Abstract

In this work, we have calculated rate constants for the tropospheric reaction between the OH radical and two \({\alpha ,\omega }\)-dialkoxyfluoropolyethers, namely \({\mathrm{R}}{-}({\mathrm{OCF}}_2)_2{-}{\mathrm{OR}}\), with \({\mathrm{R}}{=}{\mathrm{C}}_2{\mathrm{H}}_5\) and \({\mathrm{CH}}({\mathrm{CH}}_3)_2\). In terms of low atmospheric impact, dialkoxyfluoropolyethers are considered to be a promising class of the hydrofluoropolyethers family, although very little is still known about their reactivity. Calculation of the rate constants for these challenging molecular systems was performed by utilizing a cost-effective protocol for bimolecular hydrogen abstraction reactions based on multiconformer transition state theory and employing computationally feasible M08-HX electronic structure calculations. Within the protocol’s uncertainties and approximations, the results maintain the tendencies of our own previous work: (1) OH-initiated oxidation rate constants of dialkoxyfluoropolyethers involving the ethyl and isopropyl groups have the same order of magnitude, which in turn is approximately 10 times larger than the rate constants involving dimethoxyfluoropolyethers; (2) the branching ratios concerning the \(\alpha\)-hydrogens are much larger than the ones concerning the \(\beta\)-hydrogens; and (3) the chain length is seen to have a small effect on the rate constant, which is consistent with experimental work.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Montzka S, Reimann S, Engel A, Krüger K, O’Doherty S, Sturges W (2011) Ozone-depleting substances (ODSs) and related chemicals, Chapter 1, scientific assessment of ozone depletion: 2010, global ozone research and monitoring project-report no. 52. World Meteorological Organization, Geneva

  2. Molina MJ, Rowland FS (1974) Nature 249:810

    CAS  Google Scholar 

  3. Farman JD, Gardiner BG, Shanklin JD (1985) Nature 315:207

    CAS  Google Scholar 

  4. Montreal protocol on substances that deplete the ozone layer. Final Act, UNEP, 1987 (Revised 1990, London Amendment; revised 1992, Copenhagen Amendment)

  5. Zurer PS (1993) Chem Eng News 71:8–18

    Google Scholar 

  6. Lazarou YG, Papagiannakopoulos P (1999) Chem Phys Lett 301:19

    CAS  Google Scholar 

  7. The Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC) (1997)

  8. UNEP (2011) HFCs: a critical link in protecting climate and the ozone layer. United Nations Environment Programme (UNEP), Nairobi, p 36

    Google Scholar 

  9. Zhang Z, Saini RD, Kurylo MJ, Huie RE (1992) J Phys Chem 96:9301

    CAS  Google Scholar 

  10. Hsu KJ, DeMore WB (1995) J Phys Chem 99:11141

    CAS  Google Scholar 

  11. Wallington TJ, Schneider WF, Sehested J, Bilde M, Platz J, Nielsen OJ, Christensen LK, Molina MJ, Molina LT, Wooldridge PW (1997) J Phys Chem A 101:8264

    CAS  Google Scholar 

  12. Kambanis KG, Lazarou YG, Papagiannakopoulos P (1998) J Phys Chem A 102:8620

    CAS  Google Scholar 

  13. Marchionni G, Silvani R, Fontana G, Malinverno G, Visca M (1999) J Fluor Chem 95:41

    CAS  Google Scholar 

  14. Tsai WT (2007) J Hazard Mater A 139:185

    CAS  Google Scholar 

  15. Bravo I, Marston G, Nutt DR, Shine KP (2011) J Quant Spectrosc Radiat Transfer 112:1967

    CAS  Google Scholar 

  16. Bivens DB, Minor BH (1998) Int J Refrig 21:567

    CAS  Google Scholar 

  17. Cavalli F, Glasius M, Hjorth J, Rindone B, Jensen NR (1998) Atmos Environ 32:3767

    CAS  Google Scholar 

  18. Sekiya A, Misaki S (2000) J Fluor Chem 101:215

    CAS  Google Scholar 

  19. Urata S, Takada A, Uchimaru T, Chandra AK (2003) Chem Phys Lett 368:215

    CAS  Google Scholar 

  20. Østerstrøm FF, Nielsen OJ, Andersen MPS, Wallington TJ (2012) Chem Phys Lett 524:32

    Google Scholar 

  21. Blanco MB, Rivela C, Teruel MA (2013) Chem Phys Lett 578:33

    CAS  Google Scholar 

  22. Mellouki A, Le Bras G, Sidebottom H (2003) Chem Rev 103:5077

    CAS  PubMed  Google Scholar 

  23. Vereecken L, Francisco JS (2012) Chem Soc Rev 41:6259

    CAS  PubMed  Google Scholar 

  24. Mellouki A, Wallington TJ, Chen J (2015) Chem Rev 115:3984

    CAS  PubMed  Google Scholar 

  25. Vereecken L, Aumont B, Barnes I, Bozzelli JW, Goldman MJ, Green WH, Madronich S, McGillen MR, Mellouki A, Orlando JJ, Picquet-Varrault B, Rickard AR, Stockwell WR, Wallington TJ, Carter WPL (2018) Int J Chem Kinet 50:435

    CAS  Google Scholar 

  26. Tuazon EC (1997) Environ Sci Technol 31:1817

    CAS  Google Scholar 

  27. Andersen MPS, Hurley MD, Wallington TJ, Blandini F, Jensen NR, Librando V, Hjorth J, Marchionni G, Avataneo M, Visca M, Nicolaisen FM, Nielsen OJ (2004) J Phys Chem A 108:1964

    CAS  Google Scholar 

  28. Wallington TJ, Hurley MD, Javadi TS, Nielsen OJ (2008) Int J Chem Kinet 40:819

    CAS  Google Scholar 

  29. Andersen MPS, Andersen VF, Nielsen OJ, Sander SP, Wallington TJ (2010) ChemPhysChem 11:4035

    PubMed  Google Scholar 

  30. Menghua W, Navarrini W, Avataneo M, Venturini F, Sansotera M, Gola M (2011) Chimica Oggi 29:67

    CAS  Google Scholar 

  31. Viegas LP (2018) J Phys Chem A 122:9721

    CAS  PubMed  Google Scholar 

  32. Viegas LP (2019) Int J Chem Kinet. https://doi.org/10.1002/kin.21259

    Article  Google Scholar 

  33. Marchionni G, Guarda PA (1998) US Patent 5,744,651

  34. Marchionni G, Visca M (2003) Eur Pat Appl EP1275678A2

  35. Navarrini W, Galimberti M, Fontana G (2006) US Patent 7,141,704

  36. Wu M, Navarrini W, Spataro G, Venturini F, Sansotera M (2012) Appl Sci 2:351

    CAS  Google Scholar 

  37. Marchionni G, Avataneo M, De Patto U, Maccone P, Pezzin G (2005) J Fluor Chem 126:465

    CAS  Google Scholar 

  38. Avataneo M, De Patto U, Galimberti M, Marchionni G (2005) J Fluor Chem 126:631

    Google Scholar 

  39. Marchionni G, Maccone P, Pezzin G (2002) J Fluor Chem 118:149

    CAS  Google Scholar 

  40. Marchionni G, Petricci S, Guarda PA, Spataro G, Pezzin G (2004) J Fluor Chem 125:1081

    CAS  Google Scholar 

  41. Vereecken L, Peeters J (2003) J Chem Phys 119:5159

    CAS  Google Scholar 

  42. Fernández-Ramos A, Ellingson BA, Meana-Pañeda R, Marques JMC, Truhlar DG (2007) Theor Chem Acc 118:813

    Google Scholar 

  43. Petit AS, Harvey JN (2012) Phys Chem Chem Phys 14:184

    CAS  PubMed  Google Scholar 

  44. Rissanen MP, Kurtén T, Sipilä M, Thornton JA, Kangasluoma J, Sarnela N, Junninen H, Jørgensen S, Schallhart S, Kajos MK, Taipale R, Springer M, Mentel TF, Ruuskanen T, Petäjä T, Worsnop DR, Kjaergaard HG, Ehn M (2014) J Am Chem Soc 136:15596

    CAS  PubMed  Google Scholar 

  45. Hansen JC, Francisco JS (2002) ChemPhysChem 3:833

    CAS  PubMed  Google Scholar 

  46. Hernández-Soto H, Weinhold F, Francisco JS (2007) J Chem Phys 127:164102

    PubMed  Google Scholar 

  47. Radice S, Causà M, Marchionni G (1998) J Fluor Chem 88:127

    CAS  Google Scholar 

  48. Radice S, Toniolo P, Avataneo M, De Patto U, Marchionni G, Castiglioni C, Tommasini M, Zerbi G (2004) J Mol Struct Theor Chem 710:151

    CAS  Google Scholar 

  49. Viegas LP (2017) Int J Quantum Chem 117:e25381

    Google Scholar 

  50. Møller KH, Otkjaer RV, Hyttinen N, Kurtén T, Kjaergaard HG (2016) J Phys Chem A 120:10072

    PubMed  Google Scholar 

  51. Bao JL, Truhlar DG (2017) Chem Soc Rev 46:7548

    CAS  PubMed  Google Scholar 

  52. Ferro-Costas D, Martínez-Núñez E, Rodríguez-Otero J, Cabaleiro-Lago E, Estévez CM, Fernández B, Fernández-Ramos A, Vázquez SA (2018) J Phys Chem A 122:4790

    CAS  PubMed  Google Scholar 

  53. Eckart C (1930) Phys Rev 35:1303

    CAS  Google Scholar 

  54. Mora-Diez N, Alvarez-Idaboy JR, Boyd RJ (2001) J Phys Chem A 105:9034

    CAS  Google Scholar 

  55. Alvarez-Idaboy JR, Mora-Diez N, Boyd RJ, Vivier-Bunge A (2001) J Am Chem Soc 123:2018

    CAS  PubMed  Google Scholar 

  56. Galano A, Alvarez-Idaboy JR, Ruiz-Santoyo ME, Vivier-Bunge A (2002) J Phys Chem A 106:9520

    Google Scholar 

  57. Bravo-Pérez G, Alvarez-Idaboy JR, Cruz-Torres A, Ruíz ME (2002) J Phys Chem A 106:4645

    Google Scholar 

  58. Galano A, Alvarez-Idaboy JR, Bravo-Pérez G, Ruiz-Santoyo ME (2002) Phys Chem Chem Phys 4:4648

    CAS  Google Scholar 

  59. Alvarez-Idaboy JR, Cruz-Torres A, Galano A, Ruiz-Santoyo ME (2004) J Phys Chem A 108:2740

    CAS  Google Scholar 

  60. Bravo-Pérez G, Alvarez-Idaboy JR, Jiménez AG, Cruz-Torres A (2005) Chem Phys 310:213

    Google Scholar 

  61. Cruz-Torres A, Galano A, Alvarez-Idaboy JR (2006) Phys Chem Chem Phys 8:285

    CAS  PubMed  Google Scholar 

  62. Iuga C, Alvarez-Idaboy JR, Reyes L, Vivier-Bunge A (2010) J Phys Chem Lett 1:3112

    CAS  Google Scholar 

  63. Iuga C, Alvarez-Idaboy JR, Vivier-Bunge A (2011) Theor Chem Acc 129:209

    CAS  Google Scholar 

  64. Zhang F, Dibble TS (2011) Phys Chem Chem Phys 13:17969

    CAS  PubMed  Google Scholar 

  65. de la Luz AP, Iuga C, Alvarez-Idaboy JR, Ortíz E, Vivier-Bunge A (2012) Int J Quantum Chem 112:3525

    Google Scholar 

  66. Elm J, Jørgensen S, Bilde M, Mikkelsen KV (2013) Phys Chem Chem Phys 15:9636

    CAS  PubMed  Google Scholar 

  67. Bänsch C, Kiecherer J, Szöri M, Olzmann M (2013) J Phys Chem A 117:8343

    PubMed  Google Scholar 

  68. Kurtén T, Rissanen MP, Mackeprang K, Thornton JA, Hyttinen N, Jørgensen S, Ehn M, Kjaergaard HG (2015) J Phys Chem A 119:11366

    PubMed  Google Scholar 

  69. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comput Chem 14:1347

    CAS  Google Scholar 

  70. Zhao Y, Truhlar DG (2008) J Chem Theory Comput 4:1849

    CAS  PubMed  Google Scholar 

  71. Jensen F (2014) J Chem Theory Comput 10:1074

    CAS  PubMed  Google Scholar 

  72. Bottoni A, Della Casa P, Poggi G (2001) J Mol Struct Theor Chem 542:123

    CAS  Google Scholar 

  73. Atadinç F, Selçuki C, Sari L, Aviyente V (2002) Phys Chem Chem Phys 4:1797

    Google Scholar 

  74. Wu JY, Liu JY, Li ZS, Sun CC (2003) J Chem Phys 118:10986

    CAS  Google Scholar 

  75. El-Nahas AM, Uchimaru T, Sugie M, Tokuhashi K, Sekiya A (2005) J Mol Struct Theor Chem 722:9

    CAS  Google Scholar 

  76. Zavala-Oseguera C, Alvarez-Idaboy JR, Merino G, Galano A (2009) J Phys Chem A 113:13913

    CAS  PubMed  Google Scholar 

  77. Zhou CW, Simmie JM, Curran HJ (2010) Phys Chem Chem Phys 12:7221

    CAS  PubMed  Google Scholar 

  78. Yu T, Zheng J, Truhlar DG (2011) Chem Sci 2:2199

    CAS  Google Scholar 

  79. Yu T, Zheng J, Truhlar DG (2012) J Phys Chem A 116:297

    CAS  PubMed  Google Scholar 

  80. Zheng J, Seal P, Truhlar DG (2013) Chem Sci 4:200

    CAS  Google Scholar 

  81. Ramasami P, Abdallah HH, Archibong EF, Blowers P, Ford TA, Kakkar R, Shuai Z, Schaefer HF III (2013) Pure Appl Chem 85:1901

    CAS  Google Scholar 

  82. Balaganesh M, Rajakumar B (2014) J Mol Graph Model 48:60

    CAS  Google Scholar 

  83. Jørgensen S, Knap HC, Otkjaer RV, Jensen AM, Kjeldsen MLH, Wennberg PO, Kjaergaard HG (2016) J Phys Chem A 120:266

    PubMed  Google Scholar 

  84. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    CAS  Google Scholar 

  85. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364

    PubMed  Google Scholar 

  86. Zhao Y, González-Garcia N, Truhlar DG (2005) J Phys Chem A 109:2012

    CAS  PubMed  Google Scholar 

  87. Zhao Y, Lynch BJ, Truhlar DG (2005) Phys Chem Chem Phys 7:43

    CAS  Google Scholar 

  88. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    PubMed  Google Scholar 

  89. Peverati R, Truhlar DG (2011) J Phys Chem Lett 2:2810

    CAS  Google Scholar 

  90. Jensen F (2001) J Chem Phys 115:9113

    CAS  Google Scholar 

  91. Jensen F, Helgaker T (2004) J Chem Phys 121:3463

    CAS  PubMed  Google Scholar 

  92. Jensen F (2007) J Phys Chem A 111:11198

    CAS  PubMed  Google Scholar 

  93. Jensen F (2012) J Chem Phys 136:114107

    PubMed  Google Scholar 

  94. Jensen F (2013) J Chem Phys 138:014107

    PubMed  Google Scholar 

  95. Marques JMC, Llanio-Trujillo JL, Abreu PE, Pereira FB (2010) J Chem Inf Model 50:2129

    CAS  PubMed  Google Scholar 

  96. Fontana G, Causà M, Gianotti V, Marchionni G (2001) J Fluor Chem 109:113

    CAS  Google Scholar 

  97. Lynch BJ, Truhlar DG (2001) J Phys Chem A 105:2936

    CAS  Google Scholar 

  98. Prinn RG, Huang J, Weiss RF, Cunnold DM, Fraser PJ, Simmonds PG, McCulloch A, Harth C, Salameh P, O’Doherty S, Wang RHJ, Porter L, Miller BR (2001) Science 292:1882

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.P.V. acknowledges financial support from the AIAS-COFUND Marie Curie program (Grant Agreement No. 609033), Prof. Frank Jensen for providing access to the computational resources and for the insightful discussions and also Dr. Serguei Patchkovskii for the brute force symmetry determination program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís P. Viegas.

Additional information

Published as part of the special collection of articles derived from the 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 46 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Viegas, L.P. Theoretical determination of the OH-initiated oxidation rate constants of \({\alpha ,\omega }\)-dialkoxyfluoropolyethers. Theor Chem Acc 138, 65 (2019). https://doi.org/10.1007/s00214-019-2436-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2436-z

Keywords

  • Atmospheric chemistry
  • Conformational sampling
  • Transition state theory
  • Density functional theory
  • Hydrofluoropolyethers