Skip to main content
Log in

The “|Δμ| big is good” rule, the maximum hardness, and minimum electrophilicity principles

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We show the relation between the “|Δμ| big is good” rule and the maximum hardness and the minimum electrophilicity principles. We focus on a double-exchange acid–base (e.g., charge transfer) reaction. We then prove that the species favored by the “|Δμ| big is good” rule are those such that the multiplication of their hardnesses is the biggest, while the validity of the minimum electrophilicity principle requires other conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford UP, New York

    Google Scholar 

  2. Parr RG (1994) Companions in the search. Int J Quantum Chem 49:739–770

    Article  Google Scholar 

  3. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873. https://doi.org/10.1021/cr990029

    Article  CAS  PubMed  Google Scholar 

  4. Johnson PA, Bartolotti LJ, Ayers PW, Fievez T, Geerlings P (2012) Charge density and chemical reactivity: a unified view from conceptual DFT”. In: Gatti C, Macchi P (eds) Modern charge density analysis. Springer, New York, pp 715–764

    Google Scholar 

  5. Miranda-Quintana RA (2018) Density functional theory for chemical reactivity. In: Islam N, Kaya S (eds) Conceptual density functional theory and its applications in the chemical domain. Apple Academic Press, New Jersey, pp 15–44

    Chapter  Google Scholar 

  6. Miranda-Quintana RA, Zadeh FH, Ayers PW (2018) Elementary derivation of the “|Δμ| big is good” rule. J Phys Chem Lett 9(15):4344–4348. https://doi.org/10.1021/acs.jpclett.8b01312

    Article  CAS  PubMed  Google Scholar 

  7. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  8. Pearson RG (1966) Acids and bases. Science 151:172–177

    Article  CAS  Google Scholar 

  9. Pearson RG (1967) Hard and soft acids and bases. ChemBr 3(3):103–107

    CAS  Google Scholar 

  10. Ayers PW (2005) An elementary derivation of the hard/soft-acid/base principle. J Chem Phys 122:141102

    Article  Google Scholar 

  11. Ayers PW, Parr RG, Pearson RG (2006) Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. J Chem Phys 124:194107

    Article  Google Scholar 

  12. Ayers PW (2007) The physical basis of the hard/soft acid/base principle. Faraday Discuss 135:161–190

    Article  CAS  Google Scholar 

  13. Ayers PW, Cardenas C (2013) Communication: a case where the hard/soft acid/base principle holds regardless of acid/base strength. J Chem Phys 138:181106

    Article  Google Scholar 

  14. Cardenas C, Ayers PW (2013) How reliable is the hard-soft acid-base principle? An assessment from numerical simulations of electron transfer energies. PCCP 15(33):13959–13968. https://doi.org/10.1039/c3cp51134k

    Article  CAS  PubMed  Google Scholar 

  15. Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J Am Chem Soc 113:1855–1856

    Article  CAS  Google Scholar 

  16. Gazquez JL, Mendez F (1994) The hard and soft acids and bases principle: an atoms in molecules viewpoint. J Phys Chem 98:4591–4593

    Article  CAS  Google Scholar 

  17. Mendez F, Gazquez JL (1994) Chemical-reactivity of enolate ions—the local hard and soft acids and bases principle viewpoint. J Am Chem Soc 116:9298–9301

    Article  CAS  Google Scholar 

  18. Miranda-Quintana RA, Kim TD, Cardenas C, Ayers PW (2017) The HSAB principle from a finite temperature grand-canonical perspective. Theor Chem Acc 136:135

    Article  Google Scholar 

  19. von Szentpály L (2017) Hardness maximization or equalization? New insights and quantitative relations between hardness increase and bond dissociation energy. J Mol Model 23(7):217. https://doi.org/10.1007/s00894-017-3383-z

    Article  Google Scholar 

  20. Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855

    Article  CAS  Google Scholar 

  21. Pearson RG (1987) Recent advances in the concept of hard and soft acids and bases. JChemEduc 64:561–567

    CAS  Google Scholar 

  22. Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018. https://doi.org/10.1021/ja9924039

    Article  CAS  Google Scholar 

  23. Pearson RG, Palke WE (1992) Support for a principle of maximum hardness. JPhysChem 96:3283–3285

    CAS  Google Scholar 

  24. Chattaraj PK (1996) The maximum hardness principle: an overview. Proc Indian Nat Sci Acad Part A 62:513–531

    CAS  Google Scholar 

  25. Torrent-Sucarrat M, Luis JM, Duran M, Sola M (2001) On the validity of the maximum hardness and minimum polarizability principles for nontotally symmetric vibrations. J Am Chem Soc 123:7951–7952

    Article  CAS  Google Scholar 

  26. Torrent-Sucarrat M, Luis JM, Duran M, Sola M (2002) Are the maximum hardness and minimum polarizability principles always obeyed in nontotally symmetric vibrations? J Chem Phys 117:10561–10570

    Article  CAS  Google Scholar 

  27. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091

    Article  CAS  Google Scholar 

  28. Morell C, Labet V, Grand A, Chermette H (2009) Minimum electrophilicity principle: an analysis based upon the variation of both chemical potential and absolute hardness. PCCP 11:3414. https://doi.org/10.1039/B818534D

    Article  Google Scholar 

  29. Parthasarathi R, Elango M, Subramanian V, Chattaraj PK (2005) Variation of electrophilicity during molecular vibrations and internal rotations. Theor Chem Acc 113:257–266. https://doi.org/10.1007/s00214-005-0634-3

    Article  CAS  Google Scholar 

  30. Chamorro E, Chattaraj PK, Fuentealba P (2003) Variation of the electrophilicity index along the reaction path. J Phys Chem A 107:7068–7072. https://doi.org/10.1021/jp035435y

    Article  CAS  PubMed  Google Scholar 

  31. Noorizadeh S (2007) Is there a minimum electrophilicity principle in chemical reactions? Chin J Chem 25:1439–1444

    Article  CAS  Google Scholar 

  32. Noorizadeh S (2007) Minimum electrophilicity principle in photocycloaddition formation of oxetanes. J Phys Org Chem 20:514–524

    Article  CAS  Google Scholar 

  33. Miranda-Quintana RA (2017) Thermodynamic electrophilicity. J Chem Phys 146:214113. https://doi.org/10.1063/1.4984611

    Article  CAS  PubMed  Google Scholar 

  34. Miranda-Quintana RA, Chattaraj PK, Ayers PW (2017) Finite temperature grand canonical ensemble study of the minimum electrophilicity principle. J Chem Phys 147:124103. https://doi.org/10.1063/1.4996443

    Article  CAS  PubMed  Google Scholar 

  35. Miranda-Quintana RA (2017) The minimum electrophilicity and the hard/soft acid/base principles. J Chem Phys 146:046101. https://doi.org/10.1063/1.4974987

    Article  CAS  PubMed  Google Scholar 

  36. Miranda-Quintana RA, Ayers PW (2018) Maximum hardness and minimum electrophilicity principles. J Chem Phys 148:196101

    Article  Google Scholar 

  37. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807. https://doi.org/10.1063/1.436185

    Article  CAS  Google Scholar 

  38. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516. https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  39. Parr RG, von Szentpály L, Liu SB (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  40. Miranda-Quintana RA, Ayers PW (2016) Interpolation of property-values between electron numbers is inconsistent with ensemble averaging. J Chem Phys 144:244112. https://doi.org/10.1063/1.4953557

    Article  CAS  PubMed  Google Scholar 

  41. Heidar Zadeh F, Miranda-Quintana RA, Verstraelen T, Bultinck P, Ayers PW (2016) When is the Fukui function not normalized? The danger of inconsistent energy interpolation models in density functional theory. J Chem Theory Comp 12:5777–5787. https://doi.org/10.1021/acs.jctc.6b00494

    Article  CAS  Google Scholar 

  42. Miranda-Quintana RA, Ayers PW (2018) Grand-canonical interpolation models. In: Islam N, Kaya S (eds) Conceptual density functional theory and its applications in the chemical domain. Apple Academic Press, New Jersey, pp 61–88

    Chapter  Google Scholar 

  43. Chattaraj PK, Ayers PW (2005) The maximum hardness principle implies the hard/soft acid/base rule. J Chem Phys 123:086101

    Article  Google Scholar 

  44. Pearson RG (1968) J Chem Educ 45:981

    Google Scholar 

  45. Miranda-Quintana RA, Kim TD, Zadeh FH, Ayers PW (2019) On the Impossibility of Unambiguously Selecting the Best Model for Fitting Data. J Math Chem:(under review)

  46. Miranda-Quintana RA (2017) Perturbed reactivity descriptors: the chemical hardness. Theor Chem Acc 136:76. https://doi.org/10.1007/s00214-017-2109-8

    Article  CAS  Google Scholar 

  47. Miranda-Quintana RA, Ayers PW (2016) Fractional electron number, temperature, and perturbations in chemical reactions. PCCP 18:15070–15080. https://doi.org/10.1039/c6cp00939e

    Article  CAS  PubMed  Google Scholar 

  48. Miranda-Quintana RA, Ayers PW (2016) Charge transfer and chemical potential in 1,3-dipolar cycloadditions. Theor Chem Acc 135:172. https://doi.org/10.1007/s00214-016-1924-7

    Article  CAS  Google Scholar 

  49. Miranda-Quintana RA, González MM, Ayers PW (2016) Electronegativity and redox reactions. PCCP 18:22235–22243. https://doi.org/10.1039/c6cp03213c

    Article  CAS  PubMed  Google Scholar 

  50. Miranda-Quintana RA, Ayers PW (2018) Dipolar cycloadditions and the “|Δμ| big is good” rule: a computational study. Theor Chem Acc 137:177. https://doi.org/10.1007/s00214-018-2391-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank NSERC, the Canada Research Chairs, Canarie, and Compute Canada for their support. RAMQ acknowledges funding from York University in the form of a York Science Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Alain Miranda-Quintana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda-Quintana, R.A., Ayers, P.W. The “|Δμ| big is good” rule, the maximum hardness, and minimum electrophilicity principles. Theor Chem Acc 138, 44 (2019). https://doi.org/10.1007/s00214-019-2435-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2435-0

Keywords

Navigation