Gas-phase reactivity tuned through the interaction with alkaline-earth derivatives

  • M. Merced Montero-Campillo
  • Oriana Brea
  • Otilia Mó
  • Ibon Alkorta
  • José Elguero
  • Manuel YáñezEmail author
Regular Article
Part of the following topical collections:
  1. 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018)


The cooperativity between MX2:XH alkaline-earth bonds and XH:NH3 hydrogen bonds (M = Mg, Ca; X = F, Cl) was investigated at the G4 level of theory. The cooperativity between these two non-covalent linkages is extremely large, to the point that the increase in their bond dissociation enthalpies may be as large as 240%. More importantly, the weaker the interaction, the larger the increase, so in some cases the linkage that stabilizes the most is the alkaline-earth bond, whereas in others is the hydrogen bond. In all cases, the formation of the MX2:XH:NH3 ternary complex is followed by a spontaneous proton transfer, very much as previously found for the Be-containing analogues. Similarly, MX2:FCl:NH3 complexes evolve from a chlorine-shared ternary complex (MX2F···Cl···NH3) or from an ion pair (MX2F···NH3Cl+) if M = Ca. Although F is the only halogen without σ-hole, MgCl2 derivatives induce the appearance of a σ-hole on it, though less deep than those induced by BeCl2. We have also studied whether Mg and Ca bond-containing complexes MR2:FY (R = H, F, Cl; Y = NH2, OH, F, Cl) may react to form radicals, as it has been found for the Be-containing analogues. These interactions provoke a drastic decrease in the F–Y bond dissociation enthalpy, very much as the one reported for the corresponding Be-analogues, to the point that in some cases the formation of the corresponding MR2F + Y· radicals becomes exothermic. Hence, the general conclusion of this study is that Mg or Ca derivatives give place to similar or even larger perturbations on the electron density than those induced by Be, a result not easily predictable.


Beryllium bonds Magnesium bonds Cooperativity Spontaneous proton transfer Ion-pair formation Exothermic generation of radicals 



This work was supported by the financial support received from the Ministerio de Economía, Industria y Competitividad (Projects CTQ2015-63997-C2 and CTQ2016-76061-P), and Comunidad Autónoma de Madrid (S2013/MIT2841, Fotocarbon). The CTI (CSIC) and the Centro de Computación Científica of the UAM (CCC-UAM) are also acknowledged for their continued computational support.

Supplementary material

214_2019_2424_MOESM1_ESM.docx (4.1 mb)
Supplementary material 1 (DOCX 4238 kb)


  1. 1.
    Mahadevi AS, Sastry GN (2016) Chem Rev 116:2775–2825CrossRefGoogle Scholar
  2. 2.
    Biedermann F, Schneider HJ (2016) Chem Rev 116:5216–5300CrossRefGoogle Scholar
  3. 3.
    Mó O, Yáñez M, Elguero J (1992) J Chem Phys 97:6628–6638CrossRefGoogle Scholar
  4. 4.
    Hurtado M, Yáñez M, Herrero R, Guerrero A, Dávalos JZ, Abboud J-LM, Khater B, Guillemin JC (2009) Chem Eur J 15:4622–4629CrossRefGoogle Scholar
  5. 5.
    Martín-Sómer A, Lamsabhi A, Yáñez M, Davalos JZ, Gonzalez J, Ramos R, Guillemin JC (2012) Chem Eur J 18:15699–15705CrossRefGoogle Scholar
  6. 6.
    Yáñez M, Mó O, Alkorta I, Elguero J (2013) Chem Eur J 35:11637–11643CrossRefGoogle Scholar
  7. 7.
    Albrecht L, Boyd RJ, Mó O, Yáñez M (2012) Phys Chem Chem Phys 14:14540–14547CrossRefGoogle Scholar
  8. 8.
    Mó O, Yáñez M, Alkorta I, Elguero J (2012) J Chem Theory Comput 8:2293–2300CrossRefGoogle Scholar
  9. 9.
    Albrecht L, Boyd RJ, Mó O, Yáñez M (2014) J Phys Chem A 118:4205–4213CrossRefGoogle Scholar
  10. 10.
    Yáñez M, Mó O, Alkorta I, Elguero J (2013) Chem Phys Lett 590:22–26CrossRefGoogle Scholar
  11. 11.
    Mó O, Yáñez M, Alkorta I, Elguero J (2014) Mol Phys 112:592–600CrossRefGoogle Scholar
  12. 12.
    Brea O, Mó O, Yáñez M, Alkorta I, Elguero J (2015) Chem Eur J 21:12676–12682CrossRefGoogle Scholar
  13. 13.
    Brea O, Alkorta I, Mó O, Yáñez M, Elguero J, Corral I (2016) Angew Chem Eng Int Ed 55:8736–8739CrossRefGoogle Scholar
  14. 14.
    Bauzá A, Frontera A (2017) Chem Eur J 23:5375–5380CrossRefGoogle Scholar
  15. 15.
    Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:84108CrossRefGoogle Scholar
  16. 16.
    Møller C, Plesset M (1936) Phys Rev 46Google Scholar
  17. 17.
    Krishnan R, Pople JA (1978) Int J Quantum Chem 14:91–100CrossRefGoogle Scholar
  18. 18.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483CrossRefGoogle Scholar
  19. 19.
    Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon Press, OxfordGoogle Scholar
  20. 20.
    Savin A, Nesper R, Wengert S, Fäsler TF (1997) Angew Chem Int Ed Engl 36:1808–1832CrossRefGoogle Scholar
  21. 21.
    Weinhold F (1998) In: von Schleyer PR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 3. Wiley, Chichester, pp 1792–1811Google Scholar
  22. 22.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  23. 23.
    Wiberg KB, Bader RFW, Lau CDH (1987) J Am Chem Soc 109:985–1001CrossRefGoogle Scholar
  24. 24.
    Tood AK (2017) Journal. AIMAll (Version 17.11.14)Google Scholar
  25. 25.
    Noury S, Krokidis X, Fuster F, Silvi B (1999) Comput Chem 23:597–604CrossRefGoogle Scholar
  26. 26.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO 6.0. University of Wisconsin, MadisonGoogle Scholar
  27. 27.
    Alkorta I, Elguero J, Mó O, Yáñez M, Del Bene JE (2015) Phys Chem Chem Phys 17:2259–2267CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Química, Módulo 13, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
  2. 2.Arrhenius Laboratory, Department of Organic ChemistryStockholm UniversityStockholmSweden
  3. 3.Instituto de Química Médica, IQM-CSICMadridSpain

Personalised recommendations