i-Motif DNA structures upon electric field exposure: completing the map of induced genetic errors

Abstract

The architecture of DNA is not exclusively assembled with a sequence of Watson–Crick guanine–cytosine (GC) and adenine–thymine (AT) base pairs. On the contrary, recent experiments have detected G-quadruplex structures in G-islands, whereas C-rich regions are organized as intercalated motif (i-motif) structures. In the latter, several hemiprotonated–cytosine dimers are inserted in a large repetitive series. Previous computational characterizations of the impact of external electric fields on DNA’s mutations were focused on understanding GC, AT and G-quadruplex species. The present work provides a first assessment of the influence of intense fields onto the structure of i-motifs with the aim of reaching a more accurate prediction of the stability of DNA under the exposure of physics agents. The performed calculations demonstrate that i-motifs are particularly sensitive to the applied fields.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Watson JD, Crick FHC (1953) Nature 171:737–738

    CAS  Article  Google Scholar 

  2. 2.

    Stillman B (1996) Science 274:1659–1664

    CAS  Article  Google Scholar 

  3. 3.

    Stein LD (2004) Nature 431:915–916

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Carneiro T, Khair L, Reis CC, Borges V, Moser BA, Nakamura TM, Ferreira MG (2010) Nature 467:228–232

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Zeraati M, Langley DB, Schofield P, Moye AL, Rouet R, Hughes WE, Bryan TM, Dinger ME, Christ D (2018) Nat Chem 10:631–637

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Brooks TA, Samantha K, Laurence H (2010) FEBS J 277:3459–3469

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Moye AL, Porter KC, Cohen SB, Phan T, Zyner KG, Sasaki N, Lovrecz GO, Beck JL, Bryan TM (2015) Nat Commun 6:7643

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Gajarský M, Živković ML, Stadlbauer P, Pagano B, Fiala R, Amato J, Tomáška L, Šponer J, Plavec J, Trantírek L (2017) J Am Chem Soc 139:3591–3594

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Jacquemin D, Zúñiga J, Requena A, Cerón-Carrasco JP (2014) Acc Chem Res 47:2467–2474

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Löwdin PO (1963) Rev Mod Phys 35:724–732

    Article  Google Scholar 

  11. 11.

    Löwdin PO, Pullman P (eds) (1964) Electronic aspects of biochemistry. Academic Press, New York, p 167

    Google Scholar 

  12. 12.

    Wang W, Hellinga HW, Beese LS (2007) Proc Natl Acad Sci (PNAS) USA 108:17644–17648

    Article  Google Scholar 

  13. 13.

    Lin Y, Wang H, Gao S, Li R, Schaefer HF III (2012) J Phys Chem B 116:8908–8915

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Xiao S, Wang L, Liu Y, Lin X, Liang H (2012) J Chem Phys 137:195101

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Kimsey IJ, Petzold K, Sathyamoorthy B, Stein ZW, Al-Hashimi HM (2015) Nature 519:315–320

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Ceron-Carrasco JP, Jacquemin D (2015) Phys Chem Chem Phys 17:7754–7760

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Cerón-Carrasco JP, Requena A, Zúñiga J, Jacquemin D (2015) Front Chem 3:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Zhang C, Xie L, Ding Y, Sun Q, Xu W (2016) ACS Nano 10:3776–3782

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Phol R, Socha O, Slaviček, Šála M, Hodgkinson P (2018) Faraday Discuss 212:331–344

    Article  Google Scholar 

  20. 20.

    Cerón-Carrasco JP, Jacquemin D (2011) Chem Phys Chem 12:2615–2623

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Cerón-Carrasco JP, Requena A, Jacquemin D (2012) Theor Chem Acc 131:1188

    Article  CAS  Google Scholar 

  22. 22.

    Cerón-Carrasco JP, Jacquemin D, Cauët E (2012) Phys Chem Chem Phys 14:12457–12464

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Cruz-Ortiz AF, Rossa M, Berthias F, Berdakin M, Maitre P, Pino GA (2017) J Phys Chem Lett 8:5501–5506

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Arabi AA, Matta CF (2011) Phys Chem Chem Phys 13:13738–13748

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Arabi AA, Matta CF (2018) Phys Chem Chem Phys 20:12406–12412

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Arabi AA, Matta CF (2018) J Phys Chem B 122:8631–8641

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Matta CF, Huang L, Massa L (2012) Future Med Chem 4:1873–1875

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Cerón-Carrasco JP, Jacquemin D (2013) Phys Chem Chem Phys 15:4548–4553

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Cerón-Carrasco JP, Jacquemin D (2013) Chem Commun 49:7578–7580

    Article  CAS  Google Scholar 

  30. 30.

    Cerón-Carrasco JP, Cerezo J, Jacquemin D (2014) Phys Chem Chem Phys 16:8243–8246

    Article  PubMed  Google Scholar 

  31. 31.

    Cerón-Carrasco JP, Jacquemin D (2017) Phys Chem Chem Phys 19:9358–9365

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Mir B, Serrano I, Buitrago D, Orozco M, Escaja N, González C (2017) J Am Chem Soc 139:13985–13988

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Zhou ZJ, Li XP, Liu ZB, Li ZR, Huang XR, Sun CC (2011) J Phys Chem A 115:1418–1422

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Gao J, Berden G, Rodgers MT, Oomens J (2016) Phys Chem Chem Phys 18:7269–7277

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    CAS  Article  Google Scholar 

  37. 37.

    Gu J, Wang J, Leszczynski J, Xie Y, Schaefer HF III (2008) Chem Phys Lett 459:164–166

    CAS  Article  Google Scholar 

  38. 38.

    Zhao Y, Truhlar DG (2011) Chem Phys Lett 502:1–13

    CAS  Article  Google Scholar 

  39. 39.

    Lin Y, Wang H, Wu Y, Gao S, Schaefer HF III (2014) Phys Chem Chem Phys 16:6717–6725

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Galano A, Alvarez-Idaboy JR (2012) Phys Chem Chem Phys 14:12476–12484

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Wigner EZ (1941) Phys Chem 19:203–216

    Google Scholar 

  42. 42.

    DiLabio GA, Johnson ER (2007) J Am Chem Soc 129:6199–6203

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Schoenbach KH, Hargrave B, Joshi RP, Kolb JF, Nuccitelli R, Osgood C, Pakhomov A, Stacey M, Swanson RJ, White JA, Xiao S, Zhang J, Beebe SJ, Blackmore PF, Buescher ES (2007) IEEE Trans Dielectr Electr Insul 14:1088–1109

    CAS  Article  Google Scholar 

  44. 44.

    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Gaussian 16 Revision A03 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian Inc Wallingford CT

  46. 46.

    Mulliken R (1955) J Chem Phys 23:1833–1840

    CAS  Article  Google Scholar 

  47. 47.

    Zhou X, Liu X, Zhang X, Zhou R, He Y, Li Q, Wang Z, Zhang H (2012) Sci Rep 2:780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Schirmer B, Grimme S (2010) Chem Commun 46:7942–7944

    CAS  Article  Google Scholar 

  49. 49.

    Loos PF, Dumont E, Laurent AD, Assfeld X (2009) Chem Phys Lett 475:120–123

    CAS  Article  Google Scholar 

  50. 50.

    Ambrosek D, Loos PF, Assfeld X, Daniel C (2010) J Inorg Biochem 104:893–901

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Cauët E, Valiev M, Weare JH (2010) J Phys Chem B 114:5886–5894

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Garrec J, Patel C, Rothlisberger U, Dumont E (2012) J Am Chem Soc 134:2111–2119

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Russo N, Toscano M, Grand A (2001) J Am Chem Soc 123:10272–10279

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Russo N, Toscano M, Grand A (2003) J Phys Chem A 107:11533–11538

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research used resources of CCIPL (Centre de Calcul Intensif des Pays de Loire) and Plataforma Andaluza de Bioinformática installed at the Universidad of Málaga, Spain.

Author information

Affiliations

Authors

Corresponding author

Correspondence to José P. Cerón-Carrasco.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cerón-Carrasco, J.P., Jacquemin, D. i-Motif DNA structures upon electric field exposure: completing the map of induced genetic errors. Theor Chem Acc 138, 35 (2019). https://doi.org/10.1007/s00214-019-2423-4

Download citation

Keywords

  • DNA
  • Telomeres
  • Mutation
  • Proton transfer
  • Density functional calculations