Skip to main content
Log in

Theoretical study of transesterification of diethyl carbonate with methanol catalyzed by base and Lewis acid

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A detailed study of mechanism of the reaction transesterification of diethyl carbonate with methanol as a model reaction of chemical recycling of polycarbonate waste has been investigated theoretically. Thermodynamics parameters have been described at B3LYP/6-311++G(df,p) level. The calculations show that in the case on non-catalytic reaction the presence of hydrogen-bonded methanol cluster can noticeably reduce the energy barrier. This complex possesses higher electron–donor and acid–base properties than free alcohol molecules, thus increasing the activity of complexes in the reaction. The calculations show that the catalysis by sodium methylate is much more preferable than the catalysis with zinc acetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Elias F, Thibault C (2015) Room temperature organocatalyzed reductive depolymerization of waste polyethers, polyesters, and polycarbonates. Chemsuschem 8:980–984. https://doi.org/10.1002/cssc.201500054

    Article  CAS  Google Scholar 

  2. Ignatyev AI, Thielemans W, Vander Beke B (2014) Recycling of polymers: a review. Chemsuschem 7:1579–1593. https://doi.org/10.1002/cssc.201300898

    Article  CAS  PubMed  Google Scholar 

  3. Antonakou EV, Achilias DS (2013) Recent advances in polycarbonate recycling: a review of degradation methods and their mechanisms. Waste Biomass Valorization 4:9–21. https://doi.org/10.1007/s12649-012-9159-x

    Article  CAS  Google Scholar 

  4. Achilias DS, Antonakou EV, Koutsokosta E, Lappas AA (2009) Chemical recycling of polymers from waste electric and electronic equipment. J Appl Polym Sci 114:212–221. https://doi.org/10.1002/app.30533

    Article  CAS  Google Scholar 

  5. Méndez-Liñán L, López-Garzón FJ, Domingo-García M, Pérez-Mendoza M (2010) Carbon adsorbents from polycarbonate pyrolysis char residue: hydrogen and methane storage capacities. Energy Fuels 24:3394–3400. https://doi.org/10.1021/ef901525b

    Article  CAS  Google Scholar 

  6. Chiu S-J, Chen S-H, Tsai C-T (2006) Effect of metal chlorides on thermal degradation of (waste) polycarbonate. Waste Manag 26:252–259. https://doi.org/10.1016/j.wasman.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  7. Pan Z, Chou I-M, Burruss RC (2009) Hydrolysis of polycarbonate in sub-critical water in fused silica capillary reactor with in situ Raman spectroscopy. Green Chem 11:1105–1107. https://doi.org/10.1039/B904810N

    Article  CAS  Google Scholar 

  8. Arai R, Zenda K, Hatakeyama K et al (2010) Reaction kinetics of hydrothermal depolymerization of poly(ethylene naphthalate), poly(ethylene terephthalate), and polycarbonate with aqueous ammonia solution. Chem Eng Sci 65:36–41. https://doi.org/10.1016/j.ces.2009.03.023

    Article  CAS  Google Scholar 

  9. Watanabe M, Matsuo Y, Matsushita T et al (2009) Chemical recycling of polycarbonate in high pressure high temperature steam at 573 K. Polym Degrad Stab 94:2157–2162. https://doi.org/10.1016/j.polymdegradstab.2009.09.010

    Article  CAS  Google Scholar 

  10. Pan Z, Hu Z, Shi Y et al (2014) Depolymerization of polycarbonate with catalyst in hot compressed water in fused silica capillary and autoclave reactors. RSC Adv 4:19992–19998. https://doi.org/10.1039/C4RA00680A

    Article  CAS  Google Scholar 

  11. Huang Y, Liu S, Pan Z (2011) Effects of plastic additives on depolymerization of polycarbonate in sub-critical water. Polym Degrad Stab 96:1405–1410. https://doi.org/10.1016/j.polymdegradstab.2011.05.017

    Article  CAS  Google Scholar 

  12. Liu F-S, Li Z, Yu S-T et al (2009) Methanolysis and hydrolysis of polycarbonate under moderate conditions. J Polym Environ 17:208. https://doi.org/10.1007/s10924-009-0140-0

    Article  CAS  Google Scholar 

  13. Grause G, Tsukada N, Hall WJ et al (2010) High-value products from the catalytic hydrolysis of polycarbonate waste. Polym J 42:438

    Article  CAS  Google Scholar 

  14. Grause G, Sugawara K, Mizoguchi T, Yoshioka T (2009) Pyrolytic hydrolysis of polycarbonate in the presence of earth-alkali oxides and hydroxides. Polym Degrad Stab 94:1119–1124. https://doi.org/10.1016/j.polymdegradstab.2009.03.014

    Article  CAS  Google Scholar 

  15. Yoshioka T, Sugawara K, Mizoguchi T, Okuwaki A (2005) Chemical recycling of polycarbonate to raw materials by thermal decomposition with calcium hydroxide/steam. Chem Lett 34:282–283. https://doi.org/10.1246/cl.2005.282

    Article  CAS  Google Scholar 

  16. Tagaya H, Katoh K, Kadokawa J, Chiba K (1999) Decomposition of polycarbonate in subcritical and supercritical water. Polym Degrad Stab 64:289–292. https://doi.org/10.1016/S0141-3910(98)00204-3

    Article  CAS  Google Scholar 

  17. Hatakeyama K, Kojima T, Funazukuri T (2014) Chemical recycling of polycarbonate in dilute aqueous ammonia solution under hydrothermal conditions. J Mater Cycles Waste Manag 16:124–130. https://doi.org/10.1007/s10163-013-0151-8

    Article  CAS  Google Scholar 

  18. Hata S, Goto H, Yamada E, Oku A (2002) Chemical conversion of poly(carbonate) to 1,3-dimethyl-2-imidazolidinone (DMI) and bisphenol A: a practical approach to the chemical recycling of plastic wastes. Polymer (Guildf) 43:2109–2116. https://doi.org/10.1016/S0032-3861(01)00800-X

    Article  CAS  Google Scholar 

  19. Sohei H, Hiroko G, Saki T, Akira O (2003) Viable utilization of polycarbonate as a phosgene equivalent illustrated by reactions with alkanedithiols, mercaptoethanol, aminoethanethiol, and aminoethanol: a solution for the issue of carbon resource conservation. J Appl Polym Sci 90:2959–2968. https://doi.org/10.1002/app.12936

    Article  CAS  Google Scholar 

  20. Hu L-C, Oku A, Yamada E (1998) Alkali-catalyzed methanolysis of polycarbonate. A study on recycling of bisphenol A and dimethyl carbonate. Polymer (Guildf) 39:3841–3845. https://doi.org/10.1016/S0032-3861(97)10298-1

    Article  CAS  Google Scholar 

  21. Liu F, Li Z, Yu S et al (2010) Environmentally benign methanolysis of polycarbonate to recover bisphenol A and dimethyl carbonate in ionic liquids. J Hazard Mater 174:872–875. https://doi.org/10.1016/j.jhazmat.2009.09.007

    Article  CAS  PubMed  Google Scholar 

  22. Liu F, Li L, Yu S et al (2011) Methanolysis of polycarbonate catalysed by ionic liquid [Bmim][Ac]. J Hazard Mater 189:249–254. https://doi.org/10.1016/j.jhazmat.2011.02.032

    Article  CAS  PubMed  Google Scholar 

  23. Jie H, Ke H, Qing Z et al (2006) Study on depolymerization of polycarbonate in supercritical ethanol. Polym Degrad Stab 91:2307–2314. https://doi.org/10.1016/j.polymdegradstab.2006.04.012

    Article  CAS  Google Scholar 

  24. Piñero R, García J, Cocero MJ (2005) Chemical recycling of polycarbonate in a semi-continuous lab-plant. A green route with methanol and methanol–water mixtures. Green Chem 7:380–387. https://doi.org/10.1039/B500461F

    Article  Google Scholar 

  25. Rosi L, Bartoli M, Undri A et al (2015) Synthesis of dianols or BPA through catalytic hydrolyisis/glycolysis of waste polycarbonates using a microwave heating. J Mol Catal A Chem 408:278–286. https://doi.org/10.1016/j.molcata.2015.07.027

    Article  CAS  Google Scholar 

  26. Oku A, Tanaka S, Hata S (2000) Chemical conversion of poly(carbonate) to bis(hydroxyethyl) ether of bisphenol A. An approach to the chemical recycling of plastic wastes as monomers. Polymer (Guildf) 41:6749–6753. https://doi.org/10.1016/S0032-3861(00)00014-8

    Article  CAS  Google Scholar 

  27. Lin C-H, Lin H-Y, Liao W-Z, Dai SA (2007) Novel chemical recycling of polycarbonate (PC) waste into bis-hydroxyalkyl ethers of bisphenol A for use as PU raw materials. Green Chem 9:38–43. https://doi.org/10.1039/B609638G

    Article  CAS  Google Scholar 

  28. Kim D, Kim B, Cho Y et al (2009) Kinetics of polycarbonate glycolysis in ethylene glycol. Ind Eng Chem Res 48:685–691. https://doi.org/10.1021/ie8010947

    Article  CAS  Google Scholar 

  29. Becke AD (1992) Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J Chem Phys 96:2155–2160. https://doi.org/10.1063/1.462066

    Article  CAS  Google Scholar 

  30. Becke AD (1992) Density-functional thermochemistry. II. The effect of the Perdew-Wang generalized-gradient correlation correction. J Chem Phys 97:9173–9177. https://doi.org/10.1063/1.463343

    Article  CAS  Google Scholar 

  31. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA (2009) Gaussian 09, revision A.1. Gaussian Inc, Wallingford

    Google Scholar 

  33. Carroll FA (2010) Perspectives on structure and mechanism in organic chemistry. Wiley, Hoboken

    Google Scholar 

  34. Maksić ZB, Kovačević B, Vianello R (2012) Advances in determining the absolute proton affinities of neutral organic molecules in the gas phase and their interpretation: a theoretical account. Chem Rev 112:5240–5270. https://doi.org/10.1021/cr100458v

    Article  CAS  PubMed  Google Scholar 

  35. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  36. Lin K, Zhou X, Luo Y, Liu S (2010) The microscopic structure of liquid methanol from raman spectroscopy. J Phys Chem B 114:3567–3573. https://doi.org/10.1021/jp9121968

    Article  CAS  PubMed  Google Scholar 

  37. Kostko O, Belau L, Wilson KR, Ahmed M (2008) Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol − water clusters. J Phys Chem A 112:9555–9562. https://doi.org/10.1021/jp8020479

    Article  CAS  PubMed  Google Scholar 

  38. Shi YJ, Consta S, Das AK et al (2002) A 118 nm vacuum ultraviolet laser/time-of-flight mass spectroscopic study of methanol and ethanol clusters in the vapor phase. J Chem Phys 116:6990–6999. https://doi.org/10.1063/1.1466467

    Article  CAS  Google Scholar 

  39. Samuilov AY, Balabanova FB, Samuilov YD (2014) Computational study of the reaction of dimethyl carbonate with methyl amine. Comput Theor Chem 1049:7–12. https://doi.org/10.1016/j.comptc.2014.09.010

    Article  CAS  Google Scholar 

  40. Taguchi M, Ishikawa Y, Kataoka S et al (2016) CeO2 nanocatalysts for the chemical recycling of polycarbonate. Catal Commun 84:93–97. https://doi.org/10.1016/j.catcom.2016.06.009

    Article  CAS  Google Scholar 

  41. Patai S (1971) The chemistry of the hydroxyl group. Wiley, London

    Google Scholar 

  42. Granjo JFO, Oliveira NMC (2016) Process simulation and techno-economic analysis of the production of sodium methoxide. Ind Eng Chem Res 55:156–167. https://doi.org/10.1021/acs.iecr.5b02022

    Article  CAS  Google Scholar 

  43. Gryglewicz S (1999) Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresour Technol 70:249–253. https://doi.org/10.1016/S0960-8524(99)00042-5

    Article  CAS  Google Scholar 

  44. Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev 10:248–268. https://doi.org/10.1016/j.rser.2004.09.002

    Article  CAS  Google Scholar 

  45. Shakourian-Fard M, Kamath G, Smith K et al (2015) Trends in Na-ion solvation with alkyl-carbonate electrolytes for sodium-ion batteries: insights from first-principles calculations. J Phys Chem C 119:22747–22759. https://doi.org/10.1021/acs.jpcc.5b04706

    Article  CAS  Google Scholar 

  46. Cresce AV, Russell SM, Borodin O et al (2017) Solvation behavior of carbonate-based electrolytes in sodium ion batteries. Phys Chem Chem Phys 19:574–586. https://doi.org/10.1039/C6CP07215A

    Article  CAS  Google Scholar 

  47. Snider BB, Ron E (1985) The mechanism of Lewis acid catalyzed ene reactions. J Am Chem Soc 107:8160–8164. https://doi.org/10.1021/ja00312a058

    Article  CAS  Google Scholar 

  48. Chandra Shekhar A, Ravi Kumar A, Sathaiah G et al (2009) Facile N-formylation of amines using Lewis acids as novel catalysts. Tetrahedron Lett 50:7099–7101. https://doi.org/10.1016/j.tetlet.2009.10.006

    Article  CAS  Google Scholar 

  49. Ilham Z, Saka S (2016) Esterification of glycerol from biodiesel production to glycerol carbonate in non-catalytic supercritical dimethyl carbonate. Springerplus 5:923. https://doi.org/10.1186/s40064-016-2643-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Haßkerl D, Subramanian S, Markert S et al (2018) Multi-rate state estimation applied to a pilot-scale reactive distillation process. Chem Eng Sci 185:256–281. https://doi.org/10.1016/j.ces.2018.04.018

    Article  CAS  Google Scholar 

  51. Zheng L, Cai W, Zhang X, Wang Y (2017) Design and control of reactive dividing-wall column for the synthesis of diethyl carbonate. Chem Eng Process Process Intensif 111:127–140. https://doi.org/10.1016/j.cep.2016.09.014

    Article  CAS  Google Scholar 

  52. Keller T, Holtbruegge J, Górak A (2012) Transesterification of dimethyl carbonate with ethanol in a pilot-scale reactive distillation column. Chem Eng J 180:309–322. https://doi.org/10.1016/j.cej.2011.11.072

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakov D. Samuilov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samuilov, A.Y., Samuilov, Y.D. Theoretical study of transesterification of diethyl carbonate with methanol catalyzed by base and Lewis acid. Theor Chem Acc 138, 24 (2019). https://doi.org/10.1007/s00214-018-2411-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2411-0

Keywords

Navigation