Inhibition mechanism of cathepsin B by curcumin molecule: a DFT study

Abstract

Cathepsin B is one of the attractive targets for cancer treatments due to its prominent role in tumor cell invasion and metastasis. Because of the increasing toxicity of available cancer drugs, it is essential to develop new drugs with less or no side effects. One of the natural compounds named curcumin has a well-documented history of medicine in India, which is currently in clinical trials for the treatment of various cancers. However, the inhibition mechanism of the curcumin molecule is not yet clear. In this present study, the inhibition of cathepsin B by the curcumin has been studied by quantum chemical methods using DFT method at M062X/6-31 + g(d,p)//B3LYP/6-31g(d) level of theory to obtain a complete picture of possible reaction paths. Based on the obtained results, the Cys29 can undergo nucleophilic attack at any one of the four reactive sites of the curcumin. The low activation energy 1.43 kcal/mol along with low negative reaction energy − 6.82 kcal/mol suggests that attack of Cys29 at C63 atom is the most feasible reaction path. These results suggest that curcumin can be used to develop less toxic cathepsin B inhibitors for the treatment of cancer disease.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

Cys:

Cysteine

His:

Histidine

Asn:

Asparagine

REA:

Reactant

INT:

Intermediate

TS:

Transition state

PRO:

Product

QTAIM:

Quantum theory of atoms in molecules

References

  1. 1.

    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics. CA Cancer J Clin 66:7–30. https://doi.org/10.3322/caac.21332

    Article  PubMed  Google Scholar 

  2. 2.

    Bode AM, Dong Z (2009) Cancer prevention research—then and now. Nat Rev Cancer 9:508–516. https://doi.org/10.1038/nrc2646

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Morgan DO (2007) The cell cycle principles of control. New Science Press, London

    Google Scholar 

  4. 4.

    Lah TT, Durán Alonso MB, Van Noorden CJ (2006) Antiprotease therapy in cancer: hot or not? Expert Opin Biol Ther 6:257–279. https://doi.org/10.1517/14712598.6.3.257

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Gondi CS, Rao JS (2013) Cathepsin B as a cancer target. Expert Opin Ther Targets 17:281–291. https://doi.org/10.1517/14728222.2013.740461

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Michaud S, Gour BJ (1998) Cathepsin B inhibitors as potential anti-metastatic agents. Expert Opin Ther Pat 8:645–672. https://doi.org/10.1517/13543776.8.6.645

    CAS  Article  Google Scholar 

  7. 7.

    Lampe CM, Gondi CS (2014) Cathepsin B inhibitors for targeted cancer therapy. J Cancer Sci Ther 06:417–421. https://doi.org/10.4172/1948-5956.1000302

    CAS  Article  Google Scholar 

  8. 8.

    Aggarwal N, Sloane BF (2014) Cathepsin B: multiple roles in cancer. Proteom Clin Appl 8:427–437. https://doi.org/10.1002/prca.201300105

    CAS  Article  Google Scholar 

  9. 9.

    Rossi A, Deveraux Q, Turk B, Sali A (2004) Comprehensive search for cysteine cathepsins in the human genome. Biol Chem 385:363–372. https://doi.org/10.1515/BC.2004.040

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Sloane BF, Moin K, Krepela E, Rozhin J (1990) Cathepsin B and its endogenous inhibitors: the role in tumor malignancy. Cancer Metastasis Rev 9:333–352. https://doi.org/10.1007/BF00049523

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Gocheva V, Joyce JA (2007) Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6:60–64. https://doi.org/10.4161/cc.6.1.3669

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Lakka SS, Gondi CS, Rao JS (2005) Proteases and glioma angiogenesis. Brain Pathol 15:327–341. https://doi.org/10.1111/j.1750-3639.2005.tb00118.x

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Frlan R, Gobec S (2006) Inhibitors of cathepsin B. Curr Med Chem 13:2309–2327. https://doi.org/10.2174/092986706777935122

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Kos J, Mitrović A, Mirković B (2014) The current stage of cathepsin B inhibitors as potential anticancer agents. Future Med Chem 6:1355–1371. https://doi.org/10.4155/fmc.14.73

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Steverding D (2011) The cathepsin B-selective inhibitors CA-074 and CA-074Me inactivate cathepsin L under reducing conditions. Open Enzym Inhib J 4:11–16. https://doi.org/10.2174/1874940201104010011

    CAS  Article  Google Scholar 

  16. 16.

    Withana NP, Blum G, Sameni M et al (2012) Cathepsin B inhibition limits bone metastasis in breast cancer. Cancer Res 72:1199–1209. https://doi.org/10.1158/0008-5472.CAN-11-2759

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Hatcher H, Planalp R, Cho J et al (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65:1631–1652. https://doi.org/10.1007/s00018-008-7452-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin preclinical and clinical studies. Anticancer Res 23:363–398

    CAS  PubMed  Google Scholar 

  19. 19.

    Kocaadam B, Şanlier N (2017) Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr 57:2889–2895. https://doi.org/10.1080/10408398.2015.1077195

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Lee W-H, Loo C-Y, Bebawy M et al (2013) Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol 11:338–378. https://doi.org/10.2174/1570159X11311040002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Aggarwal BB, Surh Y-J, Shishodia S (2007) The molecular targets and therapeutic uses of curcumin in health and disease. Springer, USA

    Google Scholar 

  22. 22.

    Pavlin M, Repič M, Vianello R, Mavri J (2016) The chemistry of neurodegeneration: kinetic data and their implications. Mol Neurobiol 53:3400–3415. https://doi.org/10.1007/s12035-015-9284-1

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer 41:1955–1968. https://doi.org/10.1016/j.ejca.2005.05.009

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Cheng AL, Hsu CH, Lin JK et al (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high- risk or pre-malignant lesions. Anticancer Res 21:2895–2900

    CAS  Google Scholar 

  25. 25.

    Sharma RA, Euden SA, Platton SL et al (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10:6847–6854. https://doi.org/10.1158/1078-0432.CCR-04-0744

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818. https://doi.org/10.1021/mp700113r

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Ravish I, Raghav N (2014) Curcumin as inhibitor of mammalian cathepsin B, cathepsin H, acid phosphatase and alkaline phosphatase: a correlation with pharmacological activities. Med Chem Res 23:2847–2855. https://doi.org/10.1007/s00044-013-0872-1

    CAS  Article  Google Scholar 

  28. 28.

    Trott O, Olson A (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334.AutoDock

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Krieger E, Darden T, Nabuurs SB et al. (2004) Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins Struct Funct Bioinforma 57:678–683. https://doi.org/10.1002/prot.20251

    CAS  Article  Google Scholar 

  30. 30.

    Himo F (2017) Recent trends in quantum chemical modeling of enzymatic reactions. J Am Chem Soc 139:6780–6786. https://doi.org/10.1021/jacs.7b02671

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Ahmadi S, Barrios Herrera L, Chehelamirani M et al. (2018) Multiscale modeling of enzymes: QM-cluster, QM/MM, and QM/MM/MD: a tutorial review. Int J Quantum Chem 118:e25558. https://doi.org/10.1002/qua.25558

    CAS  Article  Google Scholar 

  32. 32.

    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    CAS  Article  Google Scholar 

  33. 33.

    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    CAS  Article  Google Scholar 

  34. 34.

    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    CAS  Article  Google Scholar 

  35. 35.

    Tirado-Rives J, Jorgensen WL (2008) Performance of B3LYP Density functional methods for a large set of organic molecules. J Chem Theory Comput 4:297–306. https://doi.org/10.1021/ct700248k

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    CAS  Article  Google Scholar 

  37. 37.

    Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167. https://doi.org/10.1021/ar700111a

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. https://doi.org/10.1021/cr9904009

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Tomasi J, Mennucci B, Cancès E (1999) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct THEOCHEM 464:211–226. https://doi.org/10.1016/S0166-1280(98)00553-3

    CAS  Article  Google Scholar 

  40. 40.

    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  41. 41.

    Popelier PLA, Bader RFW (1992) The existence of an intramolecular C-H–O hydrogen bond in creatine and carbamoyl sarcosine. Chem Phys Lett 189:542–548. https://doi.org/10.1016/0009-2614(92)85247-8

    CAS  Article  Google Scholar 

  42. 42.

    Cheeseman JR, Carroll MT, Bader RFW (1988) The mechanics of hydrogen bond formation in conjugated systems. Chem Phys Lett 143:450–458. https://doi.org/10.1016/0009-2614(88)87394-9

    CAS  Article  Google Scholar 

  43. 43.

    Popelier PLA (1998) Morphy98 a program written by PLA popelier with a contribution from RGA Bone. UMIST, Manchester

    Google Scholar 

  44. 44.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ Gaussian 09 (2010) Revision B.01, Gaussian, Inc., Wallingford, CT

  45. 45.

    Jackson PA, Widen JC, Harki DA, Brummond KM (2017) Covalent modifiers: a chemical perspective on the reactivity of α, β-unsaturated carbonyls with thiols via hetero-michael addition reactions. J Med Chem 60:839–885. https://doi.org/10.1021/acs.jmedchem.6b00788

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors (C. Pitchumani Violet Mary and S.Vijayakumar) thank the Department of Science and Technology-Science and Engineering Research Board (DST-SERB), India, for awarding this research project under the OYS Scheme (Grant No. SR/FTP/PS-115/2011 dated September 19, 2013).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Vijayakumar.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and this manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 59 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pitchumani Violet Mary, C., Vijayakumar, S. & Shankar, R. Inhibition mechanism of cathepsin B by curcumin molecule: a DFT study. Theor Chem Acc 138, 21 (2019). https://doi.org/10.1007/s00214-018-2410-1

Download citation

Keywords

  • Cancer
  • DFT
  • Enzyme inhibition
  • Phytochemical compound
  • Quantum chemical calculation