Skip to main content
Log in

Complexes of 1-[3-geranyl-2,4,6-trihydroxyphenyl]-2-methylpropan-1-one with a Cu2+ ion: a DFT study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

1-[3-geranyl-2,4,6-trihydroxyphenyl]-2-methylpropan-1-one (GTM) is an acylphloroglucinol present in various plants. Its structure is largely close to that of hyperjovinol A (HPJA)—a compound with proven good antioxidant activity. Complexes of the GTM molecule with a Cu2+ ion were calculated considering all the sites to which the Cu2+ ion may bind (the four O atoms in the acylphloroglucinol moiety and the two C=C π bonds in the geranyl chain) and including also simultaneous coordination to two or three sites, when geometrically possible. Calculations were performed at the DFT level with the B3LYP functional, the 6-31+G(d,p) basis set for the C, O and H atoms and the LANL2DZ pseudopotential for the Cu2+ ion. The results show that Cu2+ is effectively reduced to Cu+ in all the calculated complexes. Comparisons with analogous complexes of related molecular structures are utilised to evaluate the influence of specific structural features on the molecule’s complexation and reducing ability. Comparisons with the complexes of a structure in which the first π bond in the geranyl chain is removed (GTM-P2) enable an evaluation of the relevance of this π bond. Comparisons with the complexes of a structure in which the geranyl chain is replaced by a prenyl chain (GTM-PR) enable an evaluation of the relevance of the second π bond in the geranyl chain. Comparisons with the complexes of HPJA enable an evaluation of the relative effects of an OH group or a π bond on the molecule’s reducing ability. The energy lowering on complexation is greatest for HPJA, nearly comparable for GTM and GTM-P2 and smallest for GTM-PR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Singh IP, Bharate SB (2006) Nat Prod Rep 23:558

    Article  CAS  Google Scholar 

  2. Bohlmann F, Abraham WR, Robinson H, King RM (1980) Phytochem 19:2475

    Article  CAS  Google Scholar 

  3. Gamiotea-Turro D, Cuesta-Rubio O, Prieto-Gonzalez S, Simone FD, Passi S, Rastrelli L (2004) J Nat Prod 67:869

    Article  PubMed  CAS  Google Scholar 

  4. Bohlmann F, Zdero C (1979) Phytochem 18:641

    Article  CAS  Google Scholar 

  5. Mammino L, Kabanda MM (2009) J Mol Struct (Theochem) 901:210–219

    Article  CAS  Google Scholar 

  6. Kabanda MM, Mammino L (2012) Int J Quantum Chem 112:3691

    Article  CAS  Google Scholar 

  7. Mammino L (2013) J Mol Model 19:2127

    Article  PubMed  CAS  Google Scholar 

  8. Mammino L, Kabanda MM (2013) Mol Simul 39(1):1–13

    Article  CAS  Google Scholar 

  9. Verotta L (2003) Phytochem Rev 1:389

    Article  Google Scholar 

  10. Delgado Alfaro RA, Gomez-Sandoval Z, Mammino L (2014) J Mol Model 20:2337. https://doi.org/10.1007/s00894-014-2337-y

    Article  CAS  Google Scholar 

  11. Mammino L (2017) Molecules 22:1294. https://doi.org/10.3390/molecules22081294

    Article  PubMed Central  CAS  Google Scholar 

  12. Mammino L (2017) J Mol Model. https://doi.org/10.1007/s00894-017-3443-4

    Article  PubMed  Google Scholar 

  13. Mammino L (2018) In: Wang Yan A et al (eds) Concepts, methods and applications of quantum systems in chemistry and physics. Progress in theoretical chemistry and physics, vol 31. Springer, Berlin, pp 281–304

    Google Scholar 

  14. Leopoldini M, Prieto Pitarch I, Russo N, Toscano M (2004) J Phys Chem A 108:92

    Article  CAS  Google Scholar 

  15. Leopoldini M, Marino T, Russo N, Toscano M (2004) Theor Chem Acc 111:210

    Article  CAS  Google Scholar 

  16. Athanasas K, Magiatis P, Fokialakis N, Skaltsounis AL, Pratsinis H, Kletsas D (2004) J Nat Prod 67:973

    Article  PubMed  CAS  Google Scholar 

  17. Alagona G, Ghio C (2009) Phys Chem Chem Phys 11:776

    Article  PubMed  CAS  Google Scholar 

  18. Alagona G, Ghio C (2009) J Phys Chem A 113:15206

    Article  PubMed  CAS  Google Scholar 

  19. Chiodo SG, Leopoldini M, Russo N, Toscano M (2010) Phys Chem Chem Phys 12:7662

    Article  PubMed  CAS  Google Scholar 

  20. Reed AE, Weinhold F (1983) J Chem Phys 78(6):4066

    Article  CAS  Google Scholar 

  21. Reed AE, Weinhold F (1985) J Chem Phys 83(4):1736

    Article  CAS  Google Scholar 

  22. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83(2):735

    Article  CAS  Google Scholar 

  23. Carpenter JE, Weinhold F (1988) J Mol Struct (Theochem) 169:41

    Article  Google Scholar 

  24. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88(6):899

    Article  CAS  Google Scholar 

  25. Merrick JP, Moran D, Radom L (2007) J Phys Chem A 111:11683

    Article  PubMed  CAS  Google Scholar 

  26. Rouvray DH (1997) In: Rouvray DH (ed) Fuzzy logic in chemistry. Academic Press, Cambridge, pp 1–29

    Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li MX, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill W, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, version D01. Gaussian, Inc., Wallingford

  28. Dennington R, Keith T, Millam J (2007) GaussView 4.1. Semichem, Inc., Shawnee Mission

  29. Chem3D, ultra version 8.0.3., Cambridge soft (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Mammino.

Additional information

Published as part of the special collection of articles “CHITEL 2017 - Paris - France”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 14910 kb)

Supplementary material 2 (PDF 1726 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mammino, L. Complexes of 1-[3-geranyl-2,4,6-trihydroxyphenyl]-2-methylpropan-1-one with a Cu2+ ion: a DFT study. Theor Chem Acc 138, 15 (2019). https://doi.org/10.1007/s00214-018-2381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2381-2

Keywords

Navigation