Skip to main content

Advertisement

Log in

On the theoretical rationalization of intermolecular interactions: insights from DFT energy partitioning schemes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The energy partitioning schemes are powerful tools bridging the gap between elementary quantum chemistry and conceptually interpretation of interactions. In this work, the density functional theory (DFT)-based energy partitioning schemes through conventional and modern formalisms have been utilized to find out what energetic components govern the nature and origin of different types of intermolecular interactions. To this end, diverse datasets covering wide ranges of interactions at equilibrium geometries as well as during the potential energy curves are investigated. With more or less different roles on the stabilization and destabilization, the electrostatic, exchange–correlation, and steric effects are shown to be the dominant factors contributing to the total interaction energies. Furthermore, the energy decomposition analyses have also been employed during the potential energy curve of the systems under study. The obtained profiles of the energetic components and their changing pattern ascertain that exchange–correlation effects alongside electrostatic and noninteracting kinetic energy components are determinant contributions following the variation trend of interaction energies. On the other hand, we find that for both equilibrium and nonequlibrium geometries of the formed complexes in each category there are reasonable and meaningful correlations between interaction energies and any of their components as well as energy components themselves based on one- to three-variables fittings. To wrap up, our findings unveil that the traditional and novel DFT energy partitioning schemes can pave the way to figure out the essence of intermolecular interactions, where the DFT energetic components come into play and further evidences of their quality to theoretical rationalization of intermolecular interactions are showcased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Riley KE, Hobza P (2011) WIREs Comput Mol Sci 1:3

    Article  CAS  Google Scholar 

  2. Dubecký M, Mitas L, Jurečka P (2016) Chem Rev 116:5188

    Article  Google Scholar 

  3. Sherrill CD (2017) In: de la Roza AO, DiLabio GA (eds) Non-covalent interactions in quantum chemistry and physics: theory and applications. Elsevier, Amsterdam

    Google Scholar 

  4. Mo Y, Bao P, Gao J (2011) Phys Chem Chem Phys 13:6760

    Article  CAS  Google Scholar 

  5. Azar RJ, Head-Gordon M (2012) J Chem Phys 136:024103

    Article  Google Scholar 

  6. Sherrill CD (2013) Acc Chem Res 46:1020

    Article  CAS  Google Scholar 

  7. Jansen G (2014) WIREs Comput Mol Sci 4:127

    Article  CAS  Google Scholar 

  8. Phipps MJS, Fox T, Tautermann CS, Skylaris C-K (2015) Chem Soc Rev 44:3177

    Article  CAS  Google Scholar 

  9. Zhao L, von Hopffgarten M, Andrada DM, Frenking G (2017) WIREs Comput Mol Sci. https://doi.org/10.1002/wcms.1345

    Article  Google Scholar 

  10. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  11. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  12. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  13. Tsuneda T (2014) Density functional theory in quantum chemistry. Springer, Tokyo

    Book  Google Scholar 

  14. Liu S (2007) J Chem Phys 126:244103

    Article  Google Scholar 

  15. Liu S, Govind N, Pedersen LG (2008) J Chem Phys 129:094104

    Article  Google Scholar 

  16. Tsirelson VG, Stash AI, Liu S (2010) J Chem Phys 133:114110

    Article  Google Scholar 

  17. Ess DH, Liu S, De Proft F (2010) J Phys Chem A 114:12952

    Article  CAS  Google Scholar 

  18. Huang Y, Zhong A-G, Yang Q, Liu S (2011) J Chem Phys 134:084103

    Article  Google Scholar 

  19. Alipour M, Mohajeri A (2012) Mol Phys 110:2895

    Article  CAS  Google Scholar 

  20. Rincón L, Almeida R (2012) J Phys Chem A 116:7523

    Article  Google Scholar 

  21. Alipour M, Mohajeri A (2012) J Phys Org Chem 25:797

    Article  CAS  Google Scholar 

  22. Liu S (2013) J Phys Chem A 117:962

    Article  CAS  Google Scholar 

  23. Wang Y-J, Zhao DB, Rong C-Y, Liu S (2013) Acta Phys-Chim Sin 29:2173

    CAS  Google Scholar 

  24. Fang D, Piquemal J-P, Liu S, Cisneros GA (2014) Theor Chem Acc 133:1484

    Article  Google Scholar 

  25. Alipour M (2014) Chem Phys 434:11

    Article  CAS  Google Scholar 

  26. Rong C, Lu T, Liu S (2014) J Chem Phys 140:024109

    Article  Google Scholar 

  27. Liu S, Schauer CK (2015) J Chem Phys 142:054107

    Article  Google Scholar 

  28. Liu S (2015) J Phys Chem A 119:3107

    Article  CAS  Google Scholar 

  29. Wu Z, Rong C, Lu T, Ayers PW, Liu S (2015) Phys Chem Chem Phys 17:27052

    Article  CAS  Google Scholar 

  30. Alipour M, Safari Z (2016) Phys Chem Chem Phys 18:17917

    Article  CAS  Google Scholar 

  31. Cao X, Liu S, Rong C, Lu T, Liu S (2017) Chem Phys Lett 687:131

    Article  CAS  Google Scholar 

  32. von Weizsäcker CF (1935) Z Phys 96:431

    Article  Google Scholar 

  33. Řezáč J, Riley KE, Hobza P (2011) J Chem Theory Comput 7:2427

    Article  Google Scholar 

  34. Řezáč J, Riley KE, Hobza P (2011) J Chem Theory Comput 7:3466

    Article  Google Scholar 

  35. Brauer B, Kesharwani MK, Kozuch S, Martin JML (2016) Phys Chem Chem Phys 18:20905

    Article  CAS  Google Scholar 

  36. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  37. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Article  CAS  Google Scholar 

  38. Frisch MJ, et al. (2013) Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford, CT

  39. Lu T, Chen F (2012) J Comput Chem 33:580

    Article  Google Scholar 

  40. Darvesh KV, Boyd RJ (1987) J Chem Phys 87:5329

    Article  CAS  Google Scholar 

  41. Darvesh KV, Boyd RJ (1989) J Chem Phys 90:5638

    Article  CAS  Google Scholar 

  42. Darvesh KV, Fricker PD, Boyd RJ (1990) J Phys Chem 94:3480

    Article  CAS  Google Scholar 

  43. Mayr H, Patz M (1994) Angew Chem Int Ed Engl 33:938

    Article  Google Scholar 

  44. Liu S, Langenaeker W (2003) Theor Chem Acc 110:338

    Article  CAS  Google Scholar 

  45. Zhong AG, Liu S (2005) J Theor Comput Chem 4:833

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Shiraz University for providing the needed computing facilities for the present project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Alipour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2018_2349_MOESM1_ESM.doc

The numerical data and computed energy profiles of the interaction energies and their components as a function of the intermonomer distance for all the investigated interactions are available as supporting information from the journal’s web archive. (DOC 1591 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alipour, M., Taravat, F. On the theoretical rationalization of intermolecular interactions: insights from DFT energy partitioning schemes. Theor Chem Acc 137, 143 (2018). https://doi.org/10.1007/s00214-018-2349-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2349-2

Keywords

Navigation