Skip to main content
Log in

Designed model for the Morita–Baylis–Hillman reaction mechanism in the presence of CaO and CaO modified with ionic liquid as a solid base catalyst: a DFT and MP2 investigation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The new model for the Morita–Baylis–Hillman reaction based on the proton transfer were inquired by MP2 and DFT methods with 6-311G++(d, p) basis set combined with IEF-PCM solvent model. We focused on the reaction between acrylonitrile and benzaldehyde, catalyzed by CaO cluster and CaO modified with [Pyr][HSO4] ionic liquid. Our results indicate that in the presence of ionic liquid, the ionic liquid acts as a shuttle for the proton transfer between species in a lower energy pathway. The proton transfer step from enolate to catalyst is predicted to be the rate-limiting step for the whole process. In order to investigate the catalyst basicity, the pKa values of acrylonitrile and methyl acrylate in the presence and absence of the catalyst were measured in DMSO as a solvent. Furthermore, the proton affinities and the basicity of the CaO cluster and CaO modified with [Pyr][HSO4] ionic liquid and its components in the gas phase have been calculated at the same level of theory. Molecular electrostatic potential and valence natural atomic orbital energies in the gas phase for the catalyst have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bhowmik S, Batra S (2014) Curr Org Chem 18:3078

    Article  CAS  Google Scholar 

  2. Othman MR, Helwani Z, Fernando W (2009) Appl Organomet Chem 23:335

    Article  CAS  Google Scholar 

  3. Kannan S (2006) Catal Surv Asia 10:117

    Article  CAS  Google Scholar 

  4. Debecker DP, Gaigneaux EM, Busca G (2009) Chemistry 15:3920

    Article  CAS  Google Scholar 

  5. Basavaiah D, Rao K, Reddy R (2007) J Chem Soc Rev 36:1581

    Article  CAS  Google Scholar 

  6. Basavaiah D, Rao K, Satyanarayana A (2003) Chem Rev 103:811

    Article  CAS  Google Scholar 

  7. Aggarwal VK, Meeru A (1999) Chem Commun 125:2311

    Article  Google Scholar 

  8. Kataoka T, Iwama T, Kinoshita H, Surukami S, Iwwamura T, Watanabe S (1999) Synlett 125:197

    Article  Google Scholar 

  9. Hayase T, Shibata TS, Soai K, Wakatsuki Y (1998) Chem Commun 46:1271

    Article  Google Scholar 

  10. Rose P, Clifford A, Rayner C (2002) Chem Commun 9:968

    Article  Google Scholar 

  11. Chandrasekhar S, Narsihmulu C, Saritha B, Sultana S (2004) Tetrahedron Lett 45:5865

    Article  CAS  Google Scholar 

  12. Ge S-Q, Hua Y-Y, Xia M (2009) Ultrason Sonochem 16:743

    Article  CAS  Google Scholar 

  13. Kundu M, Mukherjee S, Balu N, Padmakumar R, Bhat S (1994) Synlett 6:444

    Article  Google Scholar 

  14. Chowdhury S, Mohan R, Scott J (2007) Tetrahedron 63:2363

    Article  CAS  Google Scholar 

  15. Santhosh K, Samanta A (2010) J Phys Chem B 114:9195

    Article  CAS  Google Scholar 

  16. Nagasawa Y, Oishi A, Itoh T, Muramatsu MYM, Ishibashi Y, Ito S, Miyasaki H (2009) J Phys Chem B 113:11868

    CAS  Google Scholar 

  17. Vieira R, Falvey D (2008) J Am Chem Soc 130:1552

    Article  CAS  Google Scholar 

  18. Hunger J, Stoppa A, Buchnner R, Hefter G (2008) J Phys Chem B 112:12913

    Article  CAS  Google Scholar 

  19. Hu Z, Margulis C (2006) J Phys Chem B 110:11025

    Article  CAS  Google Scholar 

  20. Chowdhury P, Halder M, Sanders L, Calhoun T, Anderson J, Armstrong D, Song X, Petrich J (2004) J Phys Chem B 108:10245

    Article  CAS  Google Scholar 

  21. Bourlinos AB, Raman K, Herrera R, Zhang Q, Archer LA, Giannelis EPA (2004) J Am Chem Soc 126:15358

    Article  CAS  Google Scholar 

  22. Rosa JN, Afonso AM, Santos AG (2001) Tetrahedron 57:4189

    Article  CAS  Google Scholar 

  23. Xueling M, Sanzhong L, Cheng JP (2005) J Org Chem 70:2338

    Article  Google Scholar 

  24. Huh S, Chen H-T, Wiench JW, Pruski M, Lin VSY (2004) J Am Chem Soc 126:1010

    Article  CAS  Google Scholar 

  25. Tanabe K, Holderich WF (1999) Appl Catal A 181:399

    Article  CAS  Google Scholar 

  26. Huang J-W, Shi M (2003) Adv Synth Catal 345:953

    Article  CAS  Google Scholar 

  27. Corm A, García H, Leyva A (2003) Chem Commun 63:2806

    Article  Google Scholar 

  28. Yu C, Liu B, Hu L (2001) J Org Chem 66:5413

    Article  CAS  Google Scholar 

  29. Yu C, Hu L (2002) J Org Chem 67:219

    Article  CAS  Google Scholar 

  30. Stewart R (1985) The proton: appellation to organic chemistry. Academic Press, NewYork

    Google Scholar 

  31. Carrol FA (1998) Perspectives on structure and mechanism in organic chemistry. Brooks-Cole, New York

    Google Scholar 

  32. Zhao J, Zhang RY (2004) Atmos Environ 38:2177

    Article  CAS  Google Scholar 

  33. Enami S, Mishra H, Hoffmann MR, Colussi AJ (2012) J Phys Chem A 116:6027

    Article  CAS  Google Scholar 

  34. Kennedy RA, Mayhew CA, Thomas R, Watts P (2003) Int J Mass Spectrom 223:627

    Article  Google Scholar 

  35. Uggerud E (1992) Mass Spectrom Rev 11:389

    Article  CAS  Google Scholar 

  36. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503

    Article  CAS  Google Scholar 

  37. Head-Gordon M, Head-Gordon T (1994) Chem Phys Lett 220:122

    Article  CAS  Google Scholar 

  38. Frisch MJ et al (2009) GAUSSIAN 09, revision B.01. Gaussian Inc, Wallingford

    Google Scholar 

  39. Zobeydi R, Setayesh SR (2018) Chem Phys 504:31

    Article  CAS  Google Scholar 

  40. Becke A (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  41. Lee C, Yang W, Parr G (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  42. Cances M, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032

    Article  CAS  Google Scholar 

  43. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151

    Article  CAS  Google Scholar 

  44. Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43

    Article  CAS  Google Scholar 

  45. Fukui K (1970) J Phys Chem 74:4161

    Article  CAS  Google Scholar 

  46. Arnett M (1984) J Am Chem Soc 106:6759

    Article  CAS  Google Scholar 

  47. Martin JML, Francois JP, Gijbels R (1989) J Comput Chem 10:346

    Article  CAS  Google Scholar 

  48. Hwang SG, Jang YH, Chung DS (2005) Bull Korean Chem Soc 26:585

    Article  CAS  Google Scholar 

  49. Topol IA, Tawa GJ, Burt SK, Rashin AA (1997) J Phys Chem A 101:10075

    Article  CAS  Google Scholar 

  50. Richard JP (1998) Biochemistry 37:4305

    Article  CAS  Google Scholar 

  51. Kirby A (1997) Acc Chem Res 30:290

    Article  CAS  Google Scholar 

  52. Bartmess JE (2011). In: Mallard WG, Linstrom PJ (eds) NIST chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg, MD 20899. (http://webbook.nist.gov)

  53. Correa JV, Jaque P, Olah J, Toro-Labbe A, Geerlings P (2009) Chem Phys Lett 470:180

    Article  CAS  Google Scholar 

  54. Labet V, Morell C, Toro-Labbe A, Grand A (2010) Phys Chem Chem Phys 12:4142

    Article  CAS  Google Scholar 

  55. Bode M (1991) Tetrahedron Lett 32:5611

    Article  CAS  Google Scholar 

  56. Price K, Broadwater S, McQuade H (2005) Org Lett 7:147

    Article  CAS  Google Scholar 

  57. Xu J (2006) J Mol Struct THEOCHEM 767:61

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our special thanks go to the Department of Chemistry and High Performance Computing Center (SHPCC) of Sharif University of Technology to provide the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrbanoo Rahman Setayesh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zobeydi, R., Rahman Setayesh, S. Designed model for the Morita–Baylis–Hillman reaction mechanism in the presence of CaO and CaO modified with ionic liquid as a solid base catalyst: a DFT and MP2 investigation. Theor Chem Acc 137, 123 (2018). https://doi.org/10.1007/s00214-018-2306-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2306-0

Keywords

Navigation