Skip to main content
Log in

Ground and low-lying excited states of DyCl studied by the four-component relativistic configuration interaction methods

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The ground and low-lying excited states of the DyCl molecule are investigated by the four-component relativistic CI methods. Electronic states are classified into so-called families by applying the f-shell Omega decomposition method to the CI wavefunctions, and the characters of the states are clarified. The X7.5 ground state may be described as Dy+[(4f)9(6s)2]Cl, but at large nuclear distance (R > 4.80 au), beyond the equilibrium nuclear distance (4.724 au), the dominant configuration changes to Dy+[(4f)10(6s)1]Cl. The dominant configuration of Dy+[(4f)9(6s)2]F is retained in DyF, but the dominant configuration in DyCl changes drastically as R increases. The calculated value (231 cm−1) of the vibrational frequency (ωe) agrees well with the value of 233 cm−1 observed by Linton et al. (J Mol Spectrosc 232:30–39, 2005). This low frequency reflects the weakness of the Cl ligand compared to F. The Y[0.15]8.5, Z[0.85]7.5, and [0.97] states observed by Linton et al. are found to have a dominant configuration of [(4f)10(6s)1], and the A[16.4]8.5 and B[15.4]Ω states observed both have (4f)10([6p1/2,1/2])1, belonging to different families. (The number in square brackets denotes the excitation energy in unit of k cm−1, and the number after a right square bracket denotes an Ω value.) The Ω value of the B[15.4]Ω state, which has not been determined experimentally, is calculated to be 6.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. DIRAC, a relativistic ab initio electronic structure program, Release DIRAC16 (2016), written by Jensen HJAa, Bast R, Saue T, Visscher L, with contributions from Bakken V, Dyall KG, Dubillard S, Ekström U, Eliav E, Enevoldsen T, Faßhauer E, Fleig T, Fossgaard O, A. Gomes ASP, Helgaker T, Henriksson J, Iliaš M, Jacob ChR, Knecht S, Komorovský S, Kullie O, Lærdahl JK, Larsen CV, Lee YS, Nataraj HS, Nayak MK, Norman P, Olejniczak G, Olsen J, Park YC, Pedersen JK, Pernpointner M, Di Remigio R, Ruud K, Sałek P, Schimmelpfennig B, Shee A, Sikkema J, Thorvaldsen AJ, Thyssen J, van Stralen J, Villaume S, Visser O, Winther T, Yamamoto S. http://www.diracprogram.org. Accessed 03 Dec 2017

  2. Hargittai M (1988) Coord Chem Rev 91:35–88

    Article  CAS  Google Scholar 

  3. Lanza G, Varga Z, Kolonits M, Hargittai M (2008) J Chem Phys 128:074301

    Article  CAS  PubMed  Google Scholar 

  4. Roos B, Lindh R, Malmqvist P-Å, Veryazov V, Widmark P-O (2008) J Phys Chem A 112:11431–11435

    Article  CAS  PubMed  Google Scholar 

  5. Dolg M (2011) J Chem Theory Comput 7:3131–3142

    Article  CAS  PubMed  Google Scholar 

  6. Hatanaka M, Yabushita S (2014) Theor Chem Acc 133:1517

    Article  CAS  Google Scholar 

  7. Ji W-X, Xu W, Schwarz WHE, Wang S-G (2015) J Comput Chem 36:449–458

    Article  CAS  PubMed  Google Scholar 

  8. McCarthy MC, Bloch JC, Field RW, Kaledin LA (1996) J Mol Spectrosc 179:253–262

    Article  Google Scholar 

  9. Kaledin AL, Heaven MC, Field RW, Kaledin LA (1996) J Mol Spectrosc 179:310–319

    Article  CAS  Google Scholar 

  10. Kaledin LA, Holbrook RT, Kunc JA (1998) J Appl Phys 83:3499–3508

    Article  CAS  Google Scholar 

  11. Kaledin LA, Heaven MC, Field RW (1999) J Mol Spectrosc 193:285–292

    Article  CAS  PubMed  Google Scholar 

  12. Tatewaki H, Yamamoto S, Moriyama H (2015) In: Dolg M (ed) Computational methods in lanthanide and actinide chemistry. Wiley, West Sussex, pp 89–119

    Google Scholar 

  13. Moriyama H, Tatewaki H, Watanabe Y, Nakano H (2009) Int J Quantum Chem 109:1898–1904

    Article  CAS  Google Scholar 

  14. Tatewaki H, Yamamoto S, Watanabe Y, Nakano H (2008) J Chem Phys 128:214901

    Article  CAS  PubMed  Google Scholar 

  15. Yamamoto S, Tatewaki H, Moriyama H (2012) Theor Chem Acc 131:1230

    Article  CAS  Google Scholar 

  16. Yamamoto S, Tatewaki H, Saue T (2008) J Chem Phys 129:244505

    Article  CAS  PubMed  Google Scholar 

  17. Yamamoto S, Tatewaki H (2011) J Chem Phys 134:164310

    Article  CAS  PubMed  Google Scholar 

  18. Yamamoto S, Tatewaki H (2012) Comput Theor Chem 980:37–43

    Article  CAS  Google Scholar 

  19. Yamamoto S, Tatewaki H (2015) J Chem Phys 142:094312

    Article  CAS  PubMed  Google Scholar 

  20. Linton C, Ghosh RK, Dick MJ, Adam AG (2005) J Mol Spectrosc 232:30–39

    Article  CAS  Google Scholar 

  21. Fleig T, Olsen J, Marian CM (2001) J Chem Phys 114:4775–4790

    Article  CAS  Google Scholar 

  22. Gomes ASP, Dyall KG, Visscher L (2010) Theor Chem Acc 127:369–381

    Article  CAS  Google Scholar 

  23. Koga T, Tatewaki H, Matsuoka O (2001) J Chem Phys 115:3561–3565

    Article  CAS  Google Scholar 

  24. Andzelm J, Kłobukowski M, Radio-Andzelm E, Sakai Y, Tatewaki H (1984) In: Huzinaga S (ed) Gaussian basis sets for molecular calculations. Elsevier, Amsterdam

    Google Scholar 

  25. Lee YS, McLean AD (1982) J Chem Phys 76:735–736

    Article  CAS  Google Scholar 

  26. Ishikawa Y, Binning RC Jr, Sando KM (1983) Chem Phys Lett 101:111–114

    Article  CAS  Google Scholar 

  27. Stanton RE, Havriliak S (1984) J Chem Phys 81:1910–1918

    Article  CAS  Google Scholar 

  28. Visser O, Visscher L, Aerts PJC, Nieuwpoort WC (1992) J Chem Phys 96:2910–2919

    Article  CAS  Google Scholar 

  29. Knecht S, Jensen HJA, Fleig T (2010) J Chem Phys 132:014108

    Article  CAS  PubMed  Google Scholar 

  30. Saue T, Jensen HJA (1999) J Chem Phys 111:6211–6222

    Article  CAS  Google Scholar 

  31. Gotkis I (1991) J Phys Chem 95:6086–6095

    Article  CAS  Google Scholar 

  32. Karlström G, Lindh R, Malmqvist P-Å, Roos BO, Ryde U, Veryazov V, Widmark P-O, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) Comput Mater Sci 28:222–239

    Article  CAS  Google Scholar 

  33. Saloni J, Roszak S, Hilpert K, Miller M, Leszczynski J (2004) Eur J Inorg Chem 2004:1212–1218

    Article  CAS  Google Scholar 

  34. Dunning A, Petrov A, Schowalter SJ, Puri P, Kotochigova S, Hudson ER (2015) J Chem Phys 143:124309

    Article  CAS  PubMed  Google Scholar 

  35. Martin WC, Zalubas R, Hagan L (1978) In: Atomic energy levels–the rare-earth elements. National Standard Reference Data Series 60:261–291. US National Bureau of Standards

  36. Huber KP, Herzberg G (1979) In: Molecular spectra and molecular structure, IV. Constants of diatomic molecules. Van Nostrand, New York

  37. Zmbov KF, Margrave JL (1966) J Phys Chem 70:3379–3382

    Article  CAS  Google Scholar 

  38. Dolg M, Stoll H (1989) Theor Chim Acta 75:369–386

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The main computations were performed on a cluster of Intel Xeon-based computers at the Institute for Advanced Studies in Artificial Intelligence (IASAI) of Chukyo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyoshi Yamamoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

See electronic supplementary material for the decomposition table generated in the f-shell Omega decomposition method.

Supplementary material 1 (PDF 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, S., Tatewaki, H. Ground and low-lying excited states of DyCl studied by the four-component relativistic configuration interaction methods. Theor Chem Acc 137, 112 (2018). https://doi.org/10.1007/s00214-018-2296-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2296-y

Keywords

Navigation