Skip to main content
Log in

A theoretical study of the reaction mechanism and rate constant of C4H (\( {{\tilde{\text{X}}}}^{2} {\varSigma^{ + }} \)) + C2H6

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Theoretical investigations have been carried out on the mechanisms and kinetics of the reaction of linear butadiynyl radical with ethane at the CCSD(T)/aug-cc-pVTZ//ωB97X-D/6-311++G(3df,2p) level. Four hydrogen abstraction channels (M1a, M1b, M2a and M2b) were investigated. The calculated results indicate that two competitive channels M1a and M1b are the predominant mechanisms, while M2a and M2b are unfavorable due to the higher barriers. The canonical variational transition state theory (CVT) with the small-curvature tunneling correction (SCT) was utilized to calculate the rate constants for M1a and M1b. The reactant side wells along the two reaction paths (M1a and M2b) were found and considered in chemical kinetic calculations. The three-parameter rate constant expressions are fitted over a wide temperature range of 145–1000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kiefer JH, Sidhu SS, Kern RD, Xie K, Chen H, Harding LB (1992) Combust Sci Technol 82:101–130

    Article  CAS  Google Scholar 

  2. Millar TJ, Farquhar PRA, Willacy K (1997) Astron Astrophys Suppl Ser 121:139–185

    Article  CAS  Google Scholar 

  3. Steven DD, Chun Ming L (1998) Astrophys J 502:898–908

    Article  Google Scholar 

  4. Hoshina K, Kohguchi H, Ohshima Y, Endo Y (1998) J Chem Phys 108:3465–3478

    Article  CAS  Google Scholar 

  5. Zhang HY, McKinnon JT (1995) Combust Sci Technol 107:261–300

    Article  CAS  Google Scholar 

  6. Dismuke KI, Graham WRM, Weltner W (1975) J Mol Spectrosc 57:127–137

    Article  CAS  Google Scholar 

  7. Guelin M, Greenan S, Thaddeus P (1978) ApJ Lett 224:27

    Article  Google Scholar 

  8. Friberg P, Hjalmarson A, Irvine WM (1980) ApJ Lett 241:99

    Article  Google Scholar 

  9. McCarthy MC, Gottlieb CA, Thaddeus P, Horn M, Botschwina P (1995) J Chem Phys 103:7820–7827

    Article  CAS  Google Scholar 

  10. Woon DE (1995) Chem Phys Lett 244:45–52

    Article  CAS  PubMed  Google Scholar 

  11. Mazzotti FJ, Raghunandan R, Esmail AM, Tulej M, Maier JP (2011) J Chem Phys 134:164303

    Article  CAS  PubMed  Google Scholar 

  12. Hausmann M, Homann KH (1991) In: Combust React Kinet, pp 22/1–22/12

  13. Kanamori H, Hirota E (1988) J Chem Phys 89:3962–3969

    Article  CAS  Google Scholar 

  14. Berteloite C, Le Picard SD, Balucani N, Canosa A, Sims IR (2010) Phys Chem Chem Phys 12:3666–3676

    Article  CAS  PubMed  Google Scholar 

  15. Berteloite C, Le Picard SD, Balucani N, Canosa A, Sims IR (2010) Phys Chem Chem Phys 12:3677–3689

    Article  CAS  PubMed  Google Scholar 

  16. Berteloite C, Le Picard SD, Birza P, Gazeau M-C, Canosa A, Bénilan Y, Sims IR (2008) Icarus 194:746–757

    Article  CAS  Google Scholar 

  17. Huo RP, Zhang X, Huang XR, Li JL, Sun CC (2011) J Phys Chem A 115:3576–3582

    Article  CAS  PubMed  Google Scholar 

  18. Huo RP, Zhang X, Zhang CF (2015) Chem Phys Lett 620:82–87

    Article  CAS  Google Scholar 

  19. Huo RP, Zhang X, Huang XR, Li JL, Sun CC (2013) Acta Chim Sinica 71:743–748

    Article  CAS  Google Scholar 

  20. Kim J, Ihee H (2012) Int J Quantum Chem 112:1913–1925

    Article  CAS  Google Scholar 

  21. Yu AY, Zhang HX (2013) Comput Theor Chem 1019:101–107

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery, JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT Gaussian 09, Revision A.01

  23. Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  24. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  25. Gonzalez C, Schlegel HB (1991) J Chem Phys 95:5853–5860

    Article  CAS  Google Scholar 

  26. Scuseria GE, Schaefer HF (1989) J Chem Phys 90:3700–3703

    Article  CAS  Google Scholar 

  27. Pople JA, Gordon MH, Raghavachari K (1989) J Chem Phys 87:5968–5975

    Article  Google Scholar 

  28. Corchado JC, Chuang YY, Past PL, Hu WP, Liu YP, Lynch GC, Nguyen KA, Jackels CF, Fernandez-Ramos A, Ellingson BA, Lynch BJ, Zheng JJ, Melissas VS, Villa J, Rossi I, Coitino EL, Pu JZ, Albu TV, Steckler R, Garrett BC, Isaacson AD, Truhlar DG (2007) POLYRATE, version 9.7. University of Minnesota, Minneapolis

  29. Liu YP, Lynch GC, Truong TN, Lu DH, Truhlar DG, Garrett BC (1993) J Am Chem Soc 115:2408–2415

    Article  CAS  Google Scholar 

  30. Garrett BC, Truhlar DG (1979) J Chem Phys 70:1593–1598

    Article  CAS  Google Scholar 

  31. Garrett BC, Truhlar DG (1979) J Am Chem Soc 101:4534–4548

    Article  CAS  Google Scholar 

  32. Neese F ORCA -an ab initio, density functional and semiempirical program package Version 2.8, Bonn University

  33. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the reviewers’ invaluable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiping Huo.

Additional information

Dr. Xuri Huang and Dr. Tao Zhang are the co-authors for this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Supplementary material 2 (DOC 398 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, R., Zhang, X., Huang, X. et al. A theoretical study of the reaction mechanism and rate constant of C4H (\( {{\tilde{\text{X}}}}^{2} {\varSigma^{ + }} \)) + C2H6. Theor Chem Acc 137, 91 (2018). https://doi.org/10.1007/s00214-018-2276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2276-2

Keywords

Navigation