Skip to main content
Log in

Theoretical investigation of the electronic properties of alkali atoms interacting with helium rare gas using a pseudopotential approach

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work, electronic properties of alkali atoms interacting with helium rare gas (CsHe and RbHe) are studied through a full configuration interaction calculation, in cooperation with a pseudopotential approach and core polarization potential. The adiabatic potential energy curves for the ground state and numerous excited states of CsHe and RbHe systems are investigated. The corresponding spectroscopic constants such as equilibrium distance Re, well depth De, vibrational constant ωe, anharmonic constant, rotational constant Be, and transition energy Te as well as the vibrational levels of all electronic states are computed. Finally, permanent and transition dipole moment curves for the sigma states are determined and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lee CJ, Havey MD, Meyer RP (1991) Laser spectroscopy of molecular LiHe: The 3d 2 p 2Π transition. Phys Rev A 43(1):77

    Article  CAS  PubMed  Google Scholar 

  2. Havey MD, Frolking SE, Wright JJ (1980) Experimental potentials for the X 2Σ+ and A2Π states of NaHe. Phys Rev Lett 45(22):1783

    Article  CAS  Google Scholar 

  3. Dehmer P, Wharton L (1972) Absolute total scattering cross sections for 7Li on He, Ne, Kr, and Xe. J Chem Phys 57(11):4821–4835

    Article  CAS  Google Scholar 

  4. Enomoto K, Hirano K, Kumakura M, Takahashi Y, Yabuzaki T (2004) Emission spectra of alkali-metal (K, Na, Li)—He exciplexes in cold helium gas. Phys Rev A 69(1):012501

    Article  CAS  Google Scholar 

  5. Lackner F, Krois G, Theisen M, Koch M, Ernst WE (2011) Spectroscopy of n S, n P, and n D Rydberg series of Cs atoms on helium nanodroplets. Phys Chem Chem Phys 13(42):18781–18788

    Article  CAS  PubMed  Google Scholar 

  6. Delhoume M, Brillet WU, Masnou-Seeuws F, Feautrier N, Rostas F (1981) Quasi-static wings and blue satellite of the K (4S-5P) doublet perturbed by neon. J Phys B At Mol Phys 14(20):3857

    Article  CAS  Google Scholar 

  7. Reho J, Higgins J, Lehmann KK, Scoles G (2000) Alkali–helium exciplex formation on the surface of helium nanodroplets. II. A time-resolved study. J Chem Phys 113(21):9694–9701

    Article  CAS  Google Scholar 

  8. Carter GM, Pritchard DE, Kaplan M, Ducas TW (1975) Differential scattering of Na 3S1/2 and 3P3/2 from Ne: determination of ground-and excited-state potentials for NaNe. Phys Rev Lett 35(17):1144

    Article  CAS  Google Scholar 

  9. Hager GD, Lott GE, Archibald AJ, Blank L, Weeks DE, Perram GP (2014) High pressure line shapes for Cs D1 and D2 lines and empirically informed interaction potentials. J Quant Spectrosc Radiat Transf 147:261–273

    Article  CAS  Google Scholar 

  10. Hedges REM, Drummond DL, Gallagher A (1972) Extreme-wing line broadening and Cs-inert-gas potentials. Phys Rev A 6(4):1519

    Article  CAS  Google Scholar 

  11. Kozlova O, Guérandel S, de Clercq E (2011) Temperature and pressure shift of the Cs clock transition in the presence of buffer gases: Ne, N2, Ar. Phys Rev A 83(6):062714

    Article  CAS  Google Scholar 

  12. Stienkemeier F, Higgins J, Callegari C, Kanorsky SI, Ernst WE, Scoles G (1996) Spectroscopy of alkali atoms (Li, Na, K) attached to large helium clusters. Z Phys D 38(3):253–263

    Article  CAS  Google Scholar 

  13. Melich M, Dupont-Roc J, Jacquier P (2009) Efficient atomization of cesium metal in solid helium by low energy (10 μJ) femtosecond pulses. Eur Phys J D 55(1):53

    Article  CAS  Google Scholar 

  14. Furukawa T, Matsuo Y, Hatakeyama A, Fukuyama Y, Kobayashi T, Izumi H, Shimoda T (2006) Measurement of a long electronic spin relaxation time of cesium atoms in superfluid helium. J Phys Rev Lett 96(9):095301

    Article  CAS  Google Scholar 

  15. Sayer B, Ferray M, Visticot JP, Lozingot J (1980) Experimental investigation of the Cs(5D5/2, m = 1/2)-rare-gas interaction: potential curves and oscillator strength of the dipole-induced transitions. J Phys B13(1):177

    Google Scholar 

  16. Sayer B, Ferray M, Lozingot J (1979) Experimental determination of the Cs(7S)-rare-gas potential energy curves and of the 6S-7S collision-induced oscillator strengths. J Phys B At Mol Phys 12(2):227

    Article  CAS  Google Scholar 

  17. Lapatovich WP, Ahmad-Bitar R, Moskowitz PE, Renhorn RA, Gottscho DE, Pritchard J (1980) Laser spectroscopy of the diatomic van der Waals molecule NaNe. J Chem Phys 73(11):5419–5431

    Article  CAS  Google Scholar 

  18. Enomoto K, Hirano K, Kumakura M, Takahashi Y, Yabuzaki T (2002) Emission spectra of Cs–He excimers in cold helium gas. J Phys Rev A 66(4):042505

    Article  CAS  Google Scholar 

  19. Brühl FR, Trasca RA, Ernst WE (2001) Rb–He exciplex formation on helium nanodroplets. J Chem Phys 115(22):10220–10224

    Article  CAS  Google Scholar 

  20. Romalis MV, Miron E, Cates GD (1997) Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, and Xe: line cores and near wings. Phys Rev A 56(6):4569

    Article  CAS  Google Scholar 

  21. Wang H, Yang Y, Xiao L, Jia S (2013) A full dimensional investigation of infrared spectroscopy of the RbCs dimer using the multi-configuration time-dependent Hartree method. J Chem Phys 139(24):244309

    Article  CAS  PubMed  Google Scholar 

  22. Takayanagi T, Shigab M (2004) Theoretical study on photoexcitation dynamics of the K atom attached to helium clusters and the solvation structures of K*Hen exciplexes. Phys Chem Chem Phys 6(13):3241–3247

    Article  CAS  Google Scholar 

  23. Chattopadhyay A (2012) Spectroscopic properties of the low-lying electronic states of RbHe n (n = 1, 2) and their comparison with lighter alkali metal-helium systems. J Phys B 45(3):035101

    Article  CAS  Google Scholar 

  24. Kunz CF, Hess BA (2000) A fast ab initio model for the calculation of excited electronic states of atoms and molecules in a weakly polarizable environment. II. Application to the spectrum of cesium in liquid helium. J Chem Phys 112(3):1383–1389

    Article  CAS  Google Scholar 

  25. Kontar S, Korek M (2015) Theoretical calculation of the electronic states below 326 000 cm−1 of the NaHe molecule. Can J Phys 93(12):1606–1614

    Article  CAS  Google Scholar 

  26. Allouche AR, Alioua K, Bouledroua M, Aubert-Frécon M (2009) Ab initio potential energy curves and transition dipole moments for the interaction of a ground state He with Na (3s–3p). Chem Phys 355(1):85–89

    Article  CAS  Google Scholar 

  27. Hanssen J, McCarroll R, Valiron P (1979) Model potential calculations of the Na–He system. J Phys B12(6):899

    Google Scholar 

  28. Nakayama A, Yamashita K (2001) Path integral Monte Carlo study on the structure and absorption spectra of alkali atoms (Li, Na, K) attached to superfluid helium clusters. J Chem Phys 114(2):780–791

    Article  CAS  Google Scholar 

  29. Czuchaj E, Rebentrost F, Stoll H, Preuss H (1989) Semi-local pseudopotential calculations for the adiabatic potentials of alkali-neon systems. Chem Phys 136(1):79–94

    Article  CAS  Google Scholar 

  30. Nakatsukasa T, Yabana K, Bertsch GF (2002) Application of density-functional theory to line broadening: Cs atoms in liquid helium. Phys Rev A 65(3):032512

    Article  CAS  Google Scholar 

  31. Philippe M, Masnou-Seeuws F, Valiron P (1979) Model-potential method for the calculation of atom-rare-gas interactions: application to the Na–Ne system. J Phys B At Mol Phys 12(15):2493

    Article  CAS  Google Scholar 

  32. Kerkines IS, Mavridis A (2000) Ab initio investigation of the LiHe X 2Σ+, A 2Π, and B 2Σ+ states: a basis set study. J Phys Chem A 104(2):408–412

    Article  CAS  Google Scholar 

  33. Goll E, Werner HJ, Stoll H, Leininger T, Gori-Giorgi P, Savin A (2006) A short-range gradient-corrected spin density functional in combination with long-range coupled-cluster methods: application to alkali-metal rare-gas dimers. Chem Phys 329(1–3):276–282

    Article  CAS  Google Scholar 

  34. Allard NF (2012) Emission profiles of K-He exciplexes in cold helium gas. J Phys Conf Ser 397(1):012068

    Article  CAS  Google Scholar 

  35. Modesto-Costa L, Mukherjee PK, Canuto S (2015) Theoretical study of the spectral shift of the absorption line of Rb and Cs in liquid helium. Chem Phys Lett 633:256–260

    Article  CAS  Google Scholar 

  36. Cvetko D, Lausi A, Morgante A, Tommasini F, Cortona P, Dondi MG (1994) A new model for atom–atom potentials. J Chem Phys 100(3):2052–2057

    Article  CAS  Google Scholar 

  37. Pascale J (1983) Use of l-dependent pseudopotentials in the study of alkali-metal-atom—He systems. The adiabatic molecular potentials. Phys Rev A 28(2):632

    Article  CAS  Google Scholar 

  38. Baylis WE (1969) Semiempirical, pseudopotential calculation of alkali–noble-gas interatomic potentials. J Chem Phys 51(6):2665–2679

    Article  CAS  Google Scholar 

  39. Patil SH (1991) Adiabatic potentials for alkali–inert gas systems in the ground state. J Chem Phys 94(12):8089–8095

    Article  CAS  Google Scholar 

  40. Chattopadhyay A (2012) Spectroscopic properties of the low-lying electronic states of RbHe n (n = 1, 2) and their comparison with lighter alkali metal-helium systems. J Phys B At Mol Opt Phys 45(3):035101

    Article  CAS  Google Scholar 

  41. Zbiri M, Daul C (2004) Investigating the M*He exciplexes, M = {Li, Na, K, Rb, Cs, Fr}: density functional approach. J Chem Phys 121(23):11625–11628

    Article  CAS  PubMed  Google Scholar 

  42. Kleinekathöfer U, Tang KT, Toennies JP, Yiu CL (1996) Potentials for some rare gas and alkali-helium systems calculated from the surface integral method. Chem Phys Lett 249(3–4):257–263

    Article  Google Scholar 

  43. Hamdi R, Abdessalem K, Dardouri R, Al-Ghamdi AA, Oujia B, Gadéa FX (2017) Spectroscopic and electric dipole properties of Sr + Ar and SrAr systems including high excited states. J Phys B At Mol Opt Phys 51:1–33

    Google Scholar 

  44. Gaied W, Habli H, Oujia B, Gadea FX (2011) Theoretical study of the MgAr molecule and its ion Mg + Ar: potential energy curves and spectroscopic constants. Eur Phys J D 62(3):371

    Article  CAS  Google Scholar 

  45. Abdessalem K, Mejrissi L, Issaoui N, Oujia B, Gadéa FX (2013) One and two-electron investigation of electronic structure for Ba+ Xe and BaXe van der Waals molecules in a pseudopotential approach. J Phys Chem A 117(36):8925–8938

    Article  CAS  PubMed  Google Scholar 

  46. Boutalib A, Daudey JP, El Mouhtadi M (1992) Theoretical study of the lowest electronic states of CaH and CaH+ molecules. Chem Phys 167(1–2):111–120

    Article  CAS  Google Scholar 

  47. Fuentealba P, Reyes O (1987) Pseudopotential calculations on the ground state of the alkaline-earth monohydride ions. Mol Phys 62(6):1291–1296

    Article  CAS  Google Scholar 

  48. Aymar M, Guérout R, Dulieu O (2011) Structure of the alkali-metal-atom + strontium molecular ions: towards photoassociation and formation of cold molecular ions. J Chem Phys 135:064305

    Article  CAS  PubMed  Google Scholar 

  49. Durand P, Barthelat JC (1974) New atomic pseudopotentials for electronic structure calculations of molecules and solids. Chem Phys Lett 27(2):191–194

    Article  CAS  Google Scholar 

  50. Durand P, Barthelat JC (1975) A theoretical method to determine atomic pseudopotentials for electronic structure calculations of molecules and solids. Theor Chim Acta 38(4):283–302

    Article  CAS  Google Scholar 

  51. Habli H, Ghalla H, Oujia B, Gadéa FX (2011) Ab initio study of spectroscopic properties of the calcium hydride molecular ion. Eur Phys J D 64(1):5

    Article  CAS  Google Scholar 

  52. Khelifi N, Oujia B, Gadea FX (2002) Ab initio adiabatic and diabatic energies and dipole moments of the KH molecule. J Chem Phys 116(7):2879–2887

    Article  CAS  Google Scholar 

  53. Mejrissi L, Habli H, Ghalla H, Oujia B, Gadéa FX (2013) Adiabatic ab initio study of the BaH+ ion including high energy excited states. J Phys Chem A 117(26):5503–5517

    Article  CAS  PubMed  Google Scholar 

  54. Chaieb M, Habli H, Mejrissi L, Oujia B, Gadéa FX (2014) Ab initio spectroscopic study for the NaRb molecule in ground and excited states. J Quant Chim 114:731

    Article  CAS  Google Scholar 

  55. Habli H, Mejrissi L, Issaoui N, Yaghmour SJ, Oujia B, Gadéa FX (2015) Ab initio calculation of the electronic structure of the strontium hydride ion (SrH+). Int J Quant Chem 115(3):172–186

    Article  CAS  Google Scholar 

  56. Zrafi W, Oujia B, Gadea FX (2006) Theoretical study of the CsH molecule: adiabatic and diabatic potential energy curves and dipole moments. J Phys B At Mol Opt Phys 39(18):3815

    Article  CAS  Google Scholar 

  57. Dardouri R, Habli H, Oujia B, Gadéa FX (2012) Theoretical study of the electronic structure of KLi molecule: adiabatic and diabatic potential energy curves and dipole moments. Chem Phys 399:65–79

    Article  CAS  Google Scholar 

  58. Souissi H, Mejriss L, Habli H, Al-Ghamdi AA, Oujia B, Gadéa FX (2017) Spectroscopic ab initio investigation of the electronic properties of (SrK)+. Chem Phys 490:19–28

    Article  CAS  Google Scholar 

  59. Habli H, Mejrissi L, Galla H, Yaghmour SJ, Oujia B, Gadéa FX (2016) Ab initio investigation of the electronic and vibrational properties for the (CaLi)+ ionic molecule. J Mol Phys 114:1568

    Article  CAS  Google Scholar 

  60. Dardouri R, Habli H, Oujia B, Gadéa FX (2013) Ab initio diabatic energies and dipole moments of the electronic states of RbLi molecule. J Comput Chem 34(24):2091–2099

    Article  CAS  PubMed  Google Scholar 

  61. Issa K, Issaoui N, Ghalla H, Yaghmour SJ, Mahros AM, Oujia B (2016) Ab initio study of Ba+ Ar n (n = 1–4) clusters: spectroscopic constants and vibrational energy levels. Mol Phys 114(1):118–127

    Article  CAS  Google Scholar 

  62. Khelifi N, Zrafi W, Oujia B, Gadea FX (2002) Ab initio adiabatic and diabatic energies and dipole moments of the RbH molecule. Phys Rev A 65(4):042513

    Article  CAS  Google Scholar 

  63. Chaieb M, Habli H, Mejrissi L, Al Ghamdi AA, Oujia B, Gadéa FX (2017) Diabatic investigation for the NaRb molecule. Int J Quant Phys 117(22):1–11

    Google Scholar 

  64. Habli H, Dardouri R, Oujia B, Gadéa FX (2011) Ab initio adiabatic and diabatic energies and dipole moments of the CaH+ molecular ion. J Phys Chem A 115(48):14045–14053

    Article  CAS  PubMed  Google Scholar 

  65. Gaied W, Oujia B (2010) Potential energy curves, permanent and transition dipole moments for numerous electronic excited states of CaAr. Int J Nano 3(2):160–172

    Article  CAS  Google Scholar 

  66. Al-dossary OM, Khelifi N (2014) Theoretical study of LiK and LiK+ in adiabatic representation. Russ J Phys Chem A 88(1):73–84

    Article  CAS  Google Scholar 

  67. Khemiri N, Dardouri R, Oujia B, Gadéa FX (2013) Ab initio investigation of electronic properties of the magnesium hydride molecular ion. J Phys Chem A 117(36):8915–8924

    Article  CAS  PubMed  Google Scholar 

  68. Mouna BHA, Dardouri R, Souissi H, Alamry KA, Oujia B, Gadéa FX (2017) Potential energy curves determination and relative properties of NaSr+ molecular ion for the ground and several excited states. Eur Phys J D 71(3):58

    Article  CAS  Google Scholar 

  69. Mtiri S, Mejrissi L, Habli H, Al-Ghamdi AA, Oujia B, Gadéa FX (2017) Theoretical investigation of the diatomic Van der Waals systems Ca+ He and CaHe. Comput Theor Chem 1114:33–46

    Article  CAS  Google Scholar 

  70. Dardouri R, Issa K, Oujia B, Gadéa FX (2012) Theoretical study of the electronic structure of LiX and NaX (X = Rb, Cs) molecules. Int J Quantum Chem 112(15):2724–2734

    Article  CAS  Google Scholar 

  71. Jellali S, Habli H, Mejrissi L, Mohery M, Oujia B, Gadéa FX (2016) Theoretical study of the SrLi+ molecular ion: structural, electronic and dipolar properties. Mol Phys 114(20):2910–2923

    Article  CAS  Google Scholar 

  72. Khelifi N, Dardouri R, Al-Dossary OM, Oujia B (2009) Theoretical study of the electronic structure of LiNa and LiNa+ molecules. J Russ Laser Res 30(2):172–186

    Article  CAS  Google Scholar 

  73. Souissi H, Jellali S, Maha C, Habli H, Oujia B, Gadéa FX (2017) An adiabatic spectroscopic investigation of the CsRb system in ground and numerous excited states. J Quant Spectrosc Radiat Transf 200:173–189

    Article  CAS  Google Scholar 

  74. Souissi H, Jellali S, Maha C, Habli H, Oujia B, Gadéa FX (2017) An adiabatic spectroscopic investigation of the CsRb system in ground and numerous excited states. J Quant Spectrosc Radiat Transf 200:173–189

    Article  CAS  Google Scholar 

  75. Müller W, Flesch J, Meyer W (1984) Treatment of intershell correlation effects in ab initio calculations by use of core polarization potentials. Method and application to alkali and alkaline earth atoms. J Chem Phys 80(7):3297–3310

    Article  Google Scholar 

  76. Foucrault M, Millié P, Daudey JP (1992) Nonperturbative method for core–valence correlation in pseudopotential calculations Application to the Rb2 and Cs2 molecules. J Chem Phys 96(2):1257–1264

    Article  CAS  Google Scholar 

  77. Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2013) NIST Atomic Spectra Database (version 5.1). http://physics.nist.gov/asd. Accessed Sept 2013

  78. Hickling HL, Viehland LA, Shepherd DT, Soldán P, Lee EP, Wright TG (2004) Spectroscopy of M+- Rg and transport coefficients of M+ in Rg (M = Rb–Fr; Rg = He–Rn). Phys Chem Chem Phys 6(17):4233–4239

    Article  CAS  Google Scholar 

  79. Tang KT, Toennies JP (1984) An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients. J Chem Phys 80(8):3726–3741

    Article  CAS  Google Scholar 

  80. Aymar M, Guérout R, Dulieu O (2011) Structure of the alkali-metal-atom + strontium molecular ions: towards photoassociation and formation of cold molecular ions. J Chem Phys 135(6):064305

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houcine Ghalla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1057 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Hadj Ayed, M., Hamdi, R., Ghalla, H. et al. Theoretical investigation of the electronic properties of alkali atoms interacting with helium rare gas using a pseudopotential approach. Theor Chem Acc 137, 83 (2018). https://doi.org/10.1007/s00214-018-2266-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2266-4

Keywords

Navigation