Developing accurate intramolecular force fields for conjugated systems through explicit coupling terms

Regular Article
  • 51 Downloads
Part of the following topical collections:
  1. Festschrift in honour of A. Rizzo

Abstract

The accuracy of molecular mechanics force fields (FF) reveals critical for applications where precise molecular structures along a conformational sampling are required, as in the simulation of electronic spectroscopies. This implies abandoning generalized FFs in favor of specific FFs, with non-transferable parameters able to accurately describe the targeted species. A promising strategy in this direction consists in the so-called quantum mechanically derived FFs, in which the parameters are fitted onto reference data computed through quantum chemistry. However, in order to obtain a global set of parameters able to reliably describe the reference potential energy surface in different regions of the conformational space, the complexity of the analytical expressions of the FF becomes crucial. Regarding intramolecular interactions, the functional form of standard transferable FFs is restricted to terms that depend on only one internal coordinate. It will be shown that such models may reveal insufficient to describe systems as polyenic chains, where complex electronic effects, e.g., conjugation, intrinsically couple different internal coordinates (ICs). We propose a functional form for intramolecular FFs, which includes explicit couplings between flexible dihedrals and stiff ICs (bonds and angles), being able to properly describe the geometrical changes arising not only from steric interactions, but also from conjugation effects, i.e., the change of bond orders induced by conformational changes. The parameterization of the coupled FFs is carried out by means of automated and efficient computational protocols, purposely developed in the present work. All procedures are tested and validated by generating FFs for the two smallest compounds in the polyenic series (butadiene and hexatriene).

Keywords

Molecular mechanics force fields Parametrization Quantum mechanically derived Conjugation 

Notes

Acknowledgements

J.C. acknowledges a fellowship provided by “Fundación Séneca – Agencia de Ciencia y Tecnología de la Región de Murcia” through the “Saavedra-Fajardo” program (20028/SF/16).

References

  1. 1.
    Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon, OxfordGoogle Scholar
  2. 2.
    Frenkel D, Smith B (1996) Understanding molecular simulations. Academic Press, San DiegoGoogle Scholar
  3. 3.
    Barone V (ed) (2011) Computational strategies for spectroscopy: from small molecules to nanosystems. Wiley, HobokenGoogle Scholar
  4. 4.
    Jorgensen WL, Tirado-Rives J (2005) Proc Natl Acad Sci USA 102:6665.  https://doi.org/10.1073/pnas.0408037102 CrossRefGoogle Scholar
  5. 5.
    Mackerell AD (2004) J Comput Chem 25(13):1584CrossRefGoogle Scholar
  6. 6.
    Sun H (1998) J Phys Chem B 102:7338.  https://doi.org/10.1021/jp980939v CrossRefGoogle Scholar
  7. 7.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157.  https://doi.org/10.1002/jcc.20035 CrossRefGoogle Scholar
  8. 8.
    Christen M, Hünenberger PH, Bakowies D, Baron R, Bürgi R, Geerke DP, Heinz TN, Kastenholz MA, Kräutler V, Oostenbrink C, Peter C, Trzesniak D, van Gunsteren WF (2005) J Comput Chem 26:1719.  https://doi.org/10.1002/jcc.20303 CrossRefGoogle Scholar
  9. 9.
    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD (2009) J Comput Chem 31:671.  https://doi.org/10.1002/jcc.21367 Google Scholar
  10. 10.
    Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) J Chem Theory Comput 12:281.  https://doi.org/10.1021/acs.jctc.5b00864 CrossRefGoogle Scholar
  11. 11.
    Cerezo J, Santoro F, Prampolini G (2016) Theor Chem Acc 135(5):1.  https://doi.org/10.1007/s00214-016-1888-7 CrossRefGoogle Scholar
  12. 12.
    Andreussi O, Prandi I, Campetella M, Prampolini G, Mennucci B (2017) J Chem Theory Comput 13:4507.  https://doi.org/10.1021/acs.jctc.7b00777 CrossRefGoogle Scholar
  13. 13.
    Cole DJ, Vilseck JZ, Tirado-Rives J, Payne MC, Jorgensen WL (2016) J Chem Theory Comput 12:2312CrossRefGoogle Scholar
  14. 14.
    Cacelli I, Cinacchi G, Prampolini G, Tani A (2004) J Am Chem Soc 126(43):14278.  https://doi.org/10.1021/ja046642u CrossRefGoogle Scholar
  15. 15.
    Cacelli I, Prampolini G (2007) J Chem Theory Comput 3(5):1803.  https://doi.org/10.1021/ct700113h CrossRefGoogle Scholar
  16. 16.
    Cacelli I, Cimoli A, Livotto PR, Prampolini G (2012) J Comput Chem 33:1055.  https://doi.org/10.1002/jcc.22937 CrossRefGoogle Scholar
  17. 17.
    Grimme S (2014) J Chem Theory Comput 10:4497.  https://doi.org/10.1021/ct500573f CrossRefGoogle Scholar
  18. 18.
    Vaiana A, Schulz A, Wolfrum J, Saure M, Smith J (2003) J Comput Chem 24:632CrossRefGoogle Scholar
  19. 19.
    Verstraelen T, Van Neck D, Ayers P, Van Speybroek V, Waroquier M (2007) J Chem Theory Comput 3:1420CrossRefGoogle Scholar
  20. 20.
    Waldher B, Kuta J, Chen S, Henson N, Clark A (2010) J Comput Chem 31:2307Google Scholar
  21. 21.
    Barone V, Cacelli I, De Mitri N, Licari D, Monti S, Prampolini G (2013) Phys Chem Chem Phys 15(11):3736.  https://doi.org/10.1039/c3cp44179b CrossRefGoogle Scholar
  22. 22.
    Vanduyfhuys L, Vandenbrande S, Verstraelen T, Schmid R, Waroquier M, Van Speybroeck V (2015) J Chem Theory Comput 36:1015.  https://doi.org/10.1002/jcc.23877. http://www.ncbi.nlm.nih.gov/pubmed/25740170
  23. 23.
    Madarász Á, Berta D, Paton RS (2016) J Chem Theory Comput 12(4):1833.  https://doi.org/10.1021/acs.jctc.5b01237 CrossRefGoogle Scholar
  24. 24.
    Zahariev F, De Silva N, Gordon MS, Windus TL, Dick-Perez M (2017) J Chem Inf Model 57:391.  https://doi.org/10.1021/acs.jcim.6b00654 CrossRefGoogle Scholar
  25. 25.
    Piquemal JP, Jordan KD (2017) J Chem Phys 147:161401.  https://doi.org/10.1063/1.5008887 CrossRefGoogle Scholar
  26. 26.
    Cacelli I, Lami CF, Prampolini G (2009) J Comput Chem 30:366CrossRefGoogle Scholar
  27. 27.
    Barone V, Cacelli I, Ferretti A, Monti S, Prampolini G (2011) J Phys Chem C 115(10):4145–4154CrossRefGoogle Scholar
  28. 28.
    Barone V, Cacelli I, Ferretti A, Prampolini G, Villani G (2014) J Chem Theory Comput 10:4883.  https://doi.org/10.1021/ct500778u CrossRefGoogle Scholar
  29. 29.
    De Mitri N, Prampolini G, Monti S, Barone V (2014) Phys Chem Chem Phys 16:16573CrossRefGoogle Scholar
  30. 30.
    Prampolini G, Livotto PR, Cacelli I (2015) J Chem Theory Comput 11(11):5182CrossRefGoogle Scholar
  31. 31.
    Prampolini G, Campetella M, De Mitri N, Livotto PR, Cacelli I (2016) J Chem Theory Comput 12:5525.  https://doi.org/10.1021/acs.jctc.6b00705 CrossRefGoogle Scholar
  32. 32.
    Macchiagodena M, Mancini G, Pagliai M, Barone V, Rode BM, Meng EC, Ferrin TE, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) Phys Chem Chem Phys 18:25342.  https://doi.org/10.1039/C6CP04666E CrossRefGoogle Scholar
  33. 33.
    Kraner S, Prampolini G, Cuniberti G (2017) J Phys Chem C.  https://doi.org/10.1021/acs.jpcc.7b03923 Google Scholar
  34. 34.
    Barone V, Bloino J, Monti S, Pedone A, Prampolini G (2010) Phys Chem Chem Phys 12:10550CrossRefGoogle Scholar
  35. 35.
    Pedone A, Prampolini G, Monti S, Barone V (2011) Chem Mater 23:5016.  https://doi.org/10.1021/cm202436b CrossRefGoogle Scholar
  36. 36.
    De Mitri N, Monti S, Prampolini G, Barone V (2013) J Chem Theory Comput 9(10):4507CrossRefGoogle Scholar
  37. 37.
    Prampolini G, Yu P, Pizzanelli S, Cacelli I, Yang F, Zhao J, Wang J (2014) J Phys Chem B 118:14899CrossRefGoogle Scholar
  38. 38.
    Cacelli I, Ferretti A, Prampolini G (2016) Theor Chem Acc 135:156. http://link.springer.com/10.1007/s00214-016-1911-z
  39. 39.
    Dasgupta S, Goddard WA (1989) J Chem Phys 90:7207.  https://doi.org/10.1063/1.456250 CrossRefGoogle Scholar
  40. 40.
  41. 41.
    Dasgupta S, Brameld KA, Fan CF, Goddard WA (1997) Spectrochim Acta Part A 53:1347.  https://doi.org/10.1016/S1386-1425(97)00035-8 CrossRefGoogle Scholar
  42. 42.
    Ewig CS, Berry R, Dinur U, Hill JR, Hwang MJ, Li H, Liang C, Maple J, Peng Z, Stockfisch TP, Thacher TS, Yan L, Ni X, Hagler AT (2001) J Comput Chem 22:1782.  https://doi.org/10.1002/jcc.1131 CrossRefGoogle Scholar
  43. 43.
    Sousa da Silva A, Vranken W (2012) BMC Res Notes 5(1):367.  https://doi.org/10.1186/1756-0500-5-367. http://www.biomedcentral.com/1756-0500/5/367
  44. 44.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision D.1. Gaussian Inc., Wallingford, CTGoogle Scholar
  45. 45.
    Zhao Y, Truhlar D (2008) Theor Chem Acc 120(1–3):215.  https://doi.org/10.1007/s00214-007-0310-x CrossRefGoogle Scholar
  46. 46.
    Jacquemin D, Adamo C (2011) J Chem Theory Comput 7(2):369.  https://doi.org/10.1021/ct1006532 CrossRefGoogle Scholar
  47. 47.
    Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) Bioinformatics 29(7):845.  https://doi.org/10.1093/bioinformatics/btt055 CrossRefGoogle Scholar
  48. 48.
    Feller D, Craig NC, Matlin AR (2008) J Phys Chem A 112(11):2131.  https://doi.org/10.1021/jp7097334 CrossRefGoogle Scholar
  49. 49.
    Walczak E, Szefczyk B, Andruniów T (2013) J Chem Theory Comput 9(11):4915.  https://doi.org/10.1021/ct400423u CrossRefGoogle Scholar
  50. 50.
    Hagler AT (2015) J Chem Theory Comput 11:5555.  https://doi.org/10.1021/acs.jctc.5b00666 CrossRefGoogle Scholar
  51. 51.
    Cacelli I, Prampolini G (2003) J Phys Chem A 107:8665.  https://doi.org/10.1021/jp034178u CrossRefGoogle Scholar
  52. 52.
    Cinacchi G, Prampolini G (2003) J Phys Chem A 107:5228.  https://doi.org/10.1021/jp034648k CrossRefGoogle Scholar
  53. 53.
    Cacelli I, Prampolini G (2005) Chem Phys 314:283.  https://doi.org/10.1016/j.chemphys.2005.03.003 CrossRefGoogle Scholar
  54. 54.
    Cinacchi G, Prampolini G (2005) J Phys Chem A 109:6290.  https://doi.org/10.1021/jp050102h CrossRefGoogle Scholar
  55. 55.
    Domenici V, Veracini CA, Fodor-Csorba K, Prampolini G, Cacelli I, Lebar A, Zalar B (2007) Chemphyschem 8:2321.  https://doi.org/10.1002/cphc.200700377 CrossRefGoogle Scholar
  56. 56.
    Guskova OA (2017) In: Tadjer A, Pavlov R, Maruani J, Brändas EJ, Delgado-Barrio G (eds) Quantum systems in physics, chemistry, and biology. Springer International Publishing, Cham, pp 209–230CrossRefGoogle Scholar
  57. 57.
    Strelnikov IA, Zubova EA, Mazo MA, Manevich LI (2017) Polym Sci A 59:242.  https://doi.org/10.1134/S0965545X17020092 CrossRefGoogle Scholar
  58. 58.
    Friederich P, Konrad M, Strunk T, Wenzel W (2018) Sci Rep 8:2559.  https://doi.org/10.1038/s41598-018-21070-0 CrossRefGoogle Scholar
  59. 59.
    Lawrence C, Skinner J (2003) Chem Phys Lett 372:842.  https://doi.org/10.1016/S0009-2614(03)00526-8 CrossRefGoogle Scholar
  60. 60.
    Cerezo J, Zuniga J, Bastida A, Requena A, Ceron-Carrasco JP (2013) Phys Chem Chem Phys 15:6527.  https://doi.org/10.1039/C3CP43947J CrossRefGoogle Scholar
  61. 61.
    Durchan M, Tichý J, Litvín R, Šlouf V, Gardian Z, Hříbek P, Vácha F, Polívka T (2012) J Phys Chem B 116(30):8880.  https://doi.org/10.1021/jp3042796 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Química FísicaUniversidad de MurciaMurciaSpain
  2. 2.Istituto di Chimica dei Composti Organo Metallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), Area della RicercaPisaItaly
  3. 3.Dipartimento di Chimica e Chimica IndustrialeUniversità di PisaPisaItaly

Personalised recommendations