Effect of electron-withdrawing terminal group on BDT-based donor materials for organic solar cells: a theoretical investigation

Regular Article
  • 17 Downloads

Abstract

Rational end group modification has been found as an effective strategy to improve power conversion efficiencies (PCEs) for photovoltaic materials. However, due to different electronic processes competition, various interaction factors must be taken into account to make materials design. Through density functional theory (DFT) and time-dependent DFT (TD-DFT), the effect of electron-withdrawing substitution on benzodithiophene-based donor materials from the open circuit voltage (\( V_{\text{OC}} \)), light absorption, exciton dissociation to charge transport in bulk materials has been investigated. The results point to that strong electron-withdrawing end group remarkably (1) enhances \( V_{\text{OC}} \) due to lowered HOMO energy level; (2) induces photon absorption redshift due to narrow optical gap (Eg); (3) facilitates exciton dissociation because of enhanced intramolecular charge transfer character. However, there is no direct correlation between electron-withdrawing ability and charge transport properties, since steric hindrance, noncovalent interaction and electrostatic interaction altogether have large impact on intermolecular stacking and then charge mobility. Comprehensive factors should be considered to improve PCEs for photovoltaic materials. Impressively, the designed molecule SM8 with dicyanovinyl-capped reveals excellent optical-electron properties, which may be a promising donor for high performance SM-OSCs.

Keywords

Small molecular organic solar cells Density functional theory (DFT) Electron-withdrawing terminal group modulation Benzo[1,2:4,5-b′]-dithiophene 

Notes

Acknowledgements

The authors gratefully acknowledge financial support from the National Key R&D program of China (2017YFA0204702), NSFC (21673247), High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan (Grant No. IDHT20180517), Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Funds (025185305000), Beijing Municipal natural science Foundation (2182012) and Scientific Research Project of Beijing Educational Committee (KM201610028006). We also heartily thank the State Key Laboratory of Theoretical and Computational Chemistry of Jilin University for providing the computational supports.

Supplementary material

214_2018_2242_MOESM1_ESM.doc (7 mb)
Supplementary material 1 (DOC 7203 kb)

References

  1. 1.
    Zhou J, Wan X, Liu Y, Zuo Y, Li Z, He G, Long G, Ni W, Li C, Su X, Chen Y (2012) J Am Chem Soc 134(39):16345–16351.  https://doi.org/10.1021/ja306865z CrossRefGoogle Scholar
  2. 2.
    Lin Y, Wang J, Li T, Wu Y, Wang C, Han L, Yao YH, Ma W, Zhan XW (2016) J Mater Chem A 4:1486–1494CrossRefGoogle Scholar
  3. 3.
    Cheng P, Zhan X (2016) Chem Soc Rev 45(9):2544–2582CrossRefGoogle Scholar
  4. 4.
    Ye C, Wang Y, Bi Z, Guo X, Fan Q, Chen J, Ou X, Ma W, Zhang M (2018) High-performance organic solar cells based on a small molecule with thieno[3,2-b]thiophene as π-bridge. Org Electron 53:273–279.  https://doi.org/10.1016/j.orgel.2017.12.003 CrossRefGoogle Scholar
  5. 5.
    Liu Y, Chen CC, Hong Z, Gao J, Yang YM, Zhou H, Dou L, Li G, Yang Y (2013) Sci Rep 3:3356.  https://doi.org/10.1038/srep03356 CrossRefGoogle Scholar
  6. 6.
    Zhang S, Wang X, Tang A, Huang J, Zhan C, Yao J (2014) Phys Chem Chem Phys 16(10):4664–4671.  https://doi.org/10.1039/c3cp54548b CrossRefGoogle Scholar
  7. 7.
    Sun SX, Huo Y, Li MM, Hu X, Zhang HJ, Zhang YW, Zhang YD, Chen XL, Shi ZF, Gong X, Chen Y, Zhang HL (2015) ACS Appl Mater Interfaces 7(36):19914–19922.  https://doi.org/10.1021/acsami.5b03488 CrossRefGoogle Scholar
  8. 8.
    Kim JH, Park JB, Yang H, Jung IH, Yoon SC, Kim D, Hwang DH (2015) ACS Appl Mater Interfaces 7(43):23866–23875.  https://doi.org/10.1021/acsami.5b05248 CrossRefGoogle Scholar
  9. 9.
    Cui Y, Li P, Song C, Zhang H (2016) J Phys Chem C 120(51):28939–28950.  https://doi.org/10.1021/acs.jpcc.6b09927 CrossRefGoogle Scholar
  10. 10.
    Patra D, Huang TY, Chiang CC, Maturana RO, Pao CW, Ho KC, Wei KH, Chu CW (2013) ACS Appl Mater Interfaces 5(19):9494–9500.  https://doi.org/10.1021/am4021928 CrossRefGoogle Scholar
  11. 11.
    Jiang B, Yao JN, Zhan ChL (2016) ACS Appl Mater Interfaces 8(39):26058–26065.  https://doi.org/10.1021/acsami.6b08407 CrossRefGoogle Scholar
  12. 12.
    Leliege A, Le Regent CH, Allain M, Blanchard P, Roncali J (2012) Chem Commun (Camb) 48(71):8907–8909.  https://doi.org/10.1039/c2cc33921h CrossRefGoogle Scholar
  13. 13.
    Jeux V, Demeter D, Leriche P, Roncali J (2013) RSC Adv 3(17):5811.  https://doi.org/10.1039/c3ra40966j CrossRefGoogle Scholar
  14. 14.
    Du J, Fortney A, Washington KE, Bulumulla C, Huang P, Dissanayake D, Biewer MC, Kowalewski T, Stefan MC (2016) ACS Appl Mater Interfaces 8(48):33025–33033.  https://doi.org/10.1021/acsami.6b11806 CrossRefGoogle Scholar
  15. 15.
    Chen K-W, Lin L-Y, Li Y-H, Li Y-Z, Nguyen TP, Biring S, Liu S-W, Wong K-T (2018) Fluorination effects of A–D–A-type small molecules on physical property and the performance of organic solar cell. Org Electron 52:342–349.  https://doi.org/10.1016/j.orgel.2017.11.021 CrossRefGoogle Scholar
  16. 16.
    Liu Y, Wan X, Wang F, Zhou J, Long G, Tian J, You J, Yang Y, Chen Y (2011) Spin-coated small molecules for high performance solar cells. Adv Energy Mater 1(5):771–775.  https://doi.org/10.1002/aenm.201100230 CrossRefGoogle Scholar
  17. 17.
    Zhang Q, Liu F, Long G, Wan X, Chen X, Zuo Y, Ni W, Li M, Hu Z, Huang F, Cao Y, Liang Z (2015) M Zhang TPRaYC.  https://doi.org/10.1038/nphoton.2014.269 Google Scholar
  18. 18.
    Kan B, Li M, Zhang Q, Liu F, Wan X, Wang Y, Ni W, Long G, Yang X, Feng H, Zuo Y, Zhang M, Huang F, Cao Y, Russell TP, Chen Y (2015) J Am Chem Soc 137(11):3886–3893.  https://doi.org/10.1021/jacs.5b00305 CrossRefGoogle Scholar
  19. 19.
    Zhou J, Zuo Y, Wan X, Long G, Zhang Q, Ni W, Liu Y, Li Z, He G, Li C, Kan B, Li M, Chen Y (2013) J Am Chem Soc 135(23):8484–8487.  https://doi.org/10.1021/ja403318y CrossRefGoogle Scholar
  20. 20.
    Shen S, Jiang P, He C, Zhang J, Shen P, Zhang Y, Yi Y, Zhang Z, Li Z, Li Y (2013) Chem Mater 25(11):2274–2281.  https://doi.org/10.1021/cm400782q CrossRefGoogle Scholar
  21. 21.
    Sun Y, Welch GC, Leong WL, Takacs CJ, Bazan GC, Heeger AJ (2012) Nat Maters 11:44–48.  https://doi.org/10.1038/nmat3160 CrossRefGoogle Scholar
  22. 22.
    van der Poll TS, Love JA, Nguyen TQ, Bazan GC (2012) Adv Mater 24(27):3646–3649.  https://doi.org/10.1002/adma.201201127 CrossRefGoogle Scholar
  23. 23.
    Yao H, Ye L, Zhang H, Li S, Zhang S, Hou J (2016) Chem Rev 116(12):7397–7457.  https://doi.org/10.1021/acs.chemrev.6b00176 CrossRefGoogle Scholar
  24. 24.
    Kan B, Zhang Q, Li M, Wan X, Ni W, Long G, Wang Y, Yang X, Feng H, Chen Y (2014) J Am Chem Soc 136(44):15529–15532.  https://doi.org/10.1021/ja509703k CrossRefGoogle Scholar
  25. 25.
    Qiu B, Yuan J, Xiao X, He D, Qiu L, Zou Y, Zhang ZG, Li Y (2015) ACS Appl Mater Interfaces 7(45):25237–25246.  https://doi.org/10.1021/acsami.5b07066 CrossRefGoogle Scholar
  26. 26.
    Wang K, Guo B, Xu Z, Guo X, Zhang M, Li Y (2015) ACS Appl Mater Interfaces 7(44):24686–24693.  https://doi.org/10.1021/acsami.5b07085 CrossRefGoogle Scholar
  27. 27.
    Hendriks KH, Li W, Wienk MM, Janssen RA (2014) J Am Chem Soc 136(34):12130–12136.  https://doi.org/10.1021/ja506265h CrossRefGoogle Scholar
  28. 28.
    Lin Y, Li Y, Zhan X (2013) Adv Energy Mater 3(6):724–728CrossRefGoogle Scholar
  29. 29.
    John P, Perdew KB, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  30. 30.
    Duan YA, Geng Y, Li HB, Jin JL, Wu Y, Su ZM (2013) J Comput Chem 34(19):1611–1619.  https://doi.org/10.1002/jcc.23298 CrossRefGoogle Scholar
  31. 31.
    Duan Y-A, Li H-B, Geng Y, Wu Y, Wang G-Y, Su Z-M (2014) Org Electron 15(2):602–613.  https://doi.org/10.1016/j.orgel.2013.12.011 CrossRefGoogle Scholar
  32. 32.
    Li S-B, Duan Y-A, Geng Y, Li H-B, Zhang J-Z, Xu H-L, Zhang M, Su Z-M (2014) Phys Chem Chem Phys 16:25799–25808.  https://doi.org/10.1039/c4cp03022b CrossRefGoogle Scholar
  33. 33.
    Adamo C, Barone V (1998) J Chem Phys 108(2):664.  https://doi.org/10.1063/1.475428 CrossRefGoogle Scholar
  34. 34.
    Truhlar DG, Zhao Y (2004) J Phys Chem C 108:6908–6918.  https://doi.org/10.1021/jp048147q CrossRefGoogle Scholar
  35. 35.
    Becke AD (1996) J Chem Phys 104(3):1040.  https://doi.org/10.1063/1.470829 CrossRefGoogle Scholar
  36. 36.
    Liu T, Troisi A (2011) J Phys Chem C 115(5):2406–2415.  https://doi.org/10.1021/jp109130y CrossRefGoogle Scholar
  37. 37.
    Li Y, Pullerits T, Zhao M, Sun M (2011) J Phys Chem C 115(44):21865–21873.  https://doi.org/10.1021/jp2040696 CrossRefGoogle Scholar
  38. 38.
    Materials studio (2005) Accelrys Inc., San DiegoGoogle Scholar
  39. 39.
    Sokolov AN, Atahan-Evrenk S, Mondal R, Akkerman HB, Sanchez-Carrera RS, Granados-Focil S, Schrier J, Mannsfeld SC, Zoombelt AP, Bao Z, Aspuru-Guzik A (2011) Nat Commun 2:437.  https://doi.org/10.1038/ncomms1451 CrossRefGoogle Scholar
  40. 40.
    Alberga D, Ciofini I, Mangiatordi GF, Pedone A, Lattanzi G, Roncali J, Adamo C (2017) Chem Mater 29(2):673–681.  https://doi.org/10.1021/acs.chemmater.6b04277 CrossRefGoogle Scholar
  41. 41.
    Mayo SL, Olafson BD, Goddard WA (1990) J Phys Chem 94:8897–8909CrossRefGoogle Scholar
  42. 42.
    Tang X-D, Liao Y, Gao H-Z, Geng Y, Su Z-M (2012) Theoretical study of the bridging effect on the charge carrier transport properties of cyclooctatetrathiophene and its derivatives. J Mater Chem 22(14):6907.  https://doi.org/10.1039/c2jm14871d CrossRefGoogle Scholar
  43. 43.
    Bredas JL, Beljonne D, Coropceanu V, Cornil J (2004) Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem Rev 104:4971–5003CrossRefGoogle Scholar
  44. 44.
    Nan G, Wang L, Yang X, Shuai Z, Zhao Y (2009) J Chem Phys 130(2):024704.  https://doi.org/10.1063/1.3055519 CrossRefGoogle Scholar
  45. 45.
    Valeev EF, Coropceanu V, da Silva Filho A, Salman S, Bredas JL (2006) J Am Chem Soc 128:9882–9886CrossRefGoogle Scholar
  46. 46.
    Adamo C, Jacquemin D (2013) Chem Soc Rev 42(3):845–856CrossRefGoogle Scholar
  47. 47.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani VMG, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian Inc., WallingfordGoogle Scholar
  48. 48.
    Lu T, Chen F (2012) J Comput Chem 33(5):580–592.  https://doi.org/10.1002/jcc.22885 CrossRefGoogle Scholar
  49. 49.
    Eastham ND, Dudnik AS, Harutyunyan B, Aldrich TJ, Leonardi MJ, Manley EF, Butler MR, Harschneck T, Ratner MA, Chen LX, Bedzyk MJ, Melkonyan FS, Facchetti A, Chang RPH, Marks TJ (2017) ACS Energy Lett 2(7):1690–1697.  https://doi.org/10.1021/acsenergylett.7b00486 CrossRefGoogle Scholar
  50. 50.
    Loser S, Savoie BM, Bruns CJ, Timalsina A, Leonardi MJ, Smith J, Harschneck T, Turrisi R, Zhou N, Stern CL, Sarjeant AA, Facchetti A, Chang RH, Stupp S, Ratner M, Chen LX, Marks TJ (2017) J Mater Chem A 5:9217–9232.  https://doi.org/10.1039/c7ta02037f CrossRefGoogle Scholar
  51. 51.
    Lin Y, Ma L, Li Y, Liu Y, Zhu D, Zhan X (2013) Adv Energy Mater 3(9):1166–1170.  https://doi.org/10.1002/aenm.201300181 CrossRefGoogle Scholar
  52. 52.
    Furukawa S, Komiyama H, Yasuda T (2016) J Phys Chem C 120(38):21235–21241.  https://doi.org/10.1021/acs.jpcc.6b06758 CrossRefGoogle Scholar
  53. 53.
    Manninen V, Heiskanen J, Pankov D, Kastinen T, Hukka T, Hormi O, Lemmetyinen H (2014) The effect of diketopyrrolopyrrole (DPP) group inclusion in p-cyanophenyl end-capped oligothiophene used as a dopant in P3HT: pCBM BHJ solar cells. Photochem Photobiol Sci 13(10):1456–1468CrossRefGoogle Scholar
  54. 54.
    Liu Y, Wan X, Wang F, Zhou J, Long G, Tian J, Chen Y (2011) High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit. Adv Mater 23(45):5387–5391CrossRefGoogle Scholar
  55. 55.
    Fitzner R, Mena-Osteritz E, Mishra A, Schulz G, Reinold E, Weil M, Körner C, Ziehlke H, Elschner C, Leo K (2012) Correlation of π-conjugated oligomer structure with film morphology and organic solar cell performance. J Am Chem Soc 134(27):11064–11067CrossRefGoogle Scholar
  56. 56.
    Ye D, Li X, Yan L, Zhang W, Hu Z, Liang Y, Fang J, Wong W-Y, Wang X (2013) Dithienosilole-bridged small molecules with different alkyl group substituents for organic solar cells exhibiting high open-circuit voltage. J Mater Chem A 1(26):7622–7629CrossRefGoogle Scholar
  57. 57.
    Steinberger S, Mishra A, Reinold E, Mena-Osteritz E, Müller H, Uhrich C, Pfeiffer M, Bäuerle P (2012) Synthesis and characterizations of red/near-IR absorbing A–D–A–D–A-type oligothiophenes containing thienothiadiazole and thienopyrazine central units. J Mater Chem 22(6):2701–2712CrossRefGoogle Scholar
  58. 58.
    Fitzner R, Reinold E, Mishra A, Mena-Osteritz E, Ziehlke H, Körner C, Leo K, Riede M, Weil M, Tsaryova O (2011) Dicyanovinyl-substituted oligothiophenes: structure-property relationships and application in vacuum-processed small molecule organic solar cells. Adv Func Mater 21(5):897–910CrossRefGoogle Scholar
  59. 59.
    He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Nat Photonics 6(9):591–595CrossRefGoogle Scholar
  60. 60.
    Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Adv Mater 18(6):789–794.  https://doi.org/10.1002/adma.200501717 CrossRefGoogle Scholar
  61. 61.
    Chen XW, Tao SL, Fan C, Chen DC, Zhou L, Lin H, Zheng CJ, Su ShJ (2017) ACS Appl Mater Interfaces 9(35):29907–29916CrossRefGoogle Scholar
  62. 62.
    Le Bahers T, Adamo C, Ciofini I (2011) A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput 7(8):2498–2506.  https://doi.org/10.1021/ct200308m CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryCapital Normal UniversityBeijingPeople’s Republic of China
  2. 2.Institute of ChemistryChinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Institute of Functional Material Chemistry, Faculty of ChemistryNortheast Normal UniversityChang ChunPeople’s Republic of China

Personalised recommendations