Skip to main content
Log in

Computational approach to study the influence of Mn, Fe, and Ni as additives toward rubber–brass adhesion

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The effect of different transition metals (manganese, iron, and nickel) as alternative for cobalt additives toward the performance of rubber adhesion to brass has been investigated by employing modeling approach at density functional theory level. Out of the three different dopants, manganese shows positive results on both sulfide surfaces with notable improvement in adhesion on copper sulfide via carbon–carbon double bond. However, it exhibits lower promotional effect on zinc sulfide than cobalt dopant. Iron, on the other hand, only enhances the adhesion on copper sulfide, while inclusion of nickel displays the lowest promotional effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li XR, Wu HY, Cheng BC (2002) Trans Nonferrous Met Soc China 12:169–172

    CAS  Google Scholar 

  2. Fulton WS (2005) Rubber Chem Technol 78:426–457

    Article  CAS  Google Scholar 

  3. van Ooij WJ, Biemond MEF (1984) Rubber Chem Technol 57:686–702

    Article  Google Scholar 

  4. Chandra AK, Biswas A, Mukhopadhyay R, Bhowmick AK (1996) J Adhes Sci Technol 10:431–460

    Article  CAS  Google Scholar 

  5. Hamed GR, Huang J (1991) Rubber Chem Technol 64:285–295

    Article  CAS  Google Scholar 

  6. Fulton WS, Smith GC, Titchener KJ (2004) Appl Surf Sci 221:69–86

    Article  CAS  Google Scholar 

  7. Mandal N, Sajith P, Agrawal SL, Bandyopadhyay S, Mukhopadhyay R, D’Cruz B, Deuri AS (2005) J Adhes 81:911–923

    Article  CAS  Google Scholar 

  8. Sajith P, Ummer MT, Mandal N, Mandot SK, Agrawal SL, Bandyopadhyay S, Mukhopadhyay R, D’Cruz B, Deuri AS, Kuriakose AP (2005) J Adhes Sci Technol 19:1475–1491

    Article  CAS  Google Scholar 

  9. Fulton WS, Sykes DE, Smith GC (2006) Appl Surf Sci 252:7074–7077

    Article  CAS  Google Scholar 

  10. Jeon GS, Kim YM, Seo G (1998) Korean Chem Eng Res 36:179

    CAS  Google Scholar 

  11. Jeon GS, Seo G (2001) J Adhes Sci Technol 15:689–701

    Article  CAS  Google Scholar 

  12. Ling CY, Hirvi JT, Suvanto M, Bazhenov AS, Markkula K, Hillman L, Pakkanen TA (2017) Theor Chem Acc 136:2–7

    Article  CAS  Google Scholar 

  13. van Ooij WJ (1977) Surf Sci 68:1–9

    Article  Google Scholar 

  14. Chandra AK, Mukhopadhyay R, Konar J, Ghosh TB, Bhowmick AK (1996) J Mater Sci 31:2667–2676

    Article  CAS  Google Scholar 

  15. Buytaert G, Coornaert F, Dekeyser W (2009) Rubber Chem Technol 82:430–441

    Article  CAS  Google Scholar 

  16. Persoone P, De Volder P, De Gryse R (1994) Solid State Commun 92:675–680

    Article  Google Scholar 

  17. Hammer GE (2001) J Vac Sci Technol 19:2846–2850

    Article  CAS  Google Scholar 

  18. van Ooij WJ (2003) in Crowther B (Ed.) Handbook of Rubber Bonding, Rapra Technology Ltd UK, pp 163–195

  19. Fulton WS, Wilson JC (2003) in Crowther B (Ed.) Handbook of Rubber Bonding, Rapra Technology Ltd UK, pp 197–212

  20. Ling CY, Hirvi JT, Suvanto M, Bazhenov AS, Ajoviita T, Markkula K, Pakkanen TA (2015) Chem Phys 453–454:7–12

    Article  CAS  Google Scholar 

  21. Jaffe JE, Zunger A (2001) Phys Rev B 64:241304

    Article  CAS  Google Scholar 

  22. Wright K, Watson GW, Parker SC, Vaughan DJ (1998) Am Mineral 83:141–146

    Article  CAS  Google Scholar 

  23. Korzhavyi PA, Abrikosov IA, Johansson B (1999) In MRS proceedings 608:115 Cambridge University Press

  24. Dubrovin IV, Budennay LD, Mizetskaya IB, Sharkina EV (1983) Izv Akad Nauk SSSR Neorg Mater 19:1816–1819

    CAS  Google Scholar 

  25. Oliveria M, McMullan RK, Wuensch BJ (1988) Solid State Ionics 28:1332–1337

    Article  Google Scholar 

  26. Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco P, Llunell M (2009) Crystal09 User’s Manual. University of Torino, Torino

    Google Scholar 

  27. Perdew JP, Ernzerhof M, Burke K (1996) J Chem Phys 105:9982–9985

    Article  CAS  Google Scholar 

  28. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029–5036

    Article  CAS  Google Scholar 

  29. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  30. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  PubMed  Google Scholar 

  31. Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835

    Article  Google Scholar 

  32. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by the Finnish Funding Agency for Technology and Innovation TEKES and the European Union/European Regional Development Fund (ERDF) for the “Smart Active Materials” project (70058/11) and “Vauhtia Renkaisiin” project (3246/31/2015) is gratefully acknowledged. We acknowledge grants of computer capacity from the Finnish Grid and Cloud Infrastructure (persistent identifier urn:nbn:fi:research-infras-2016072533).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapani A. Pakkanen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, C., Hirvi, J.T., Markkula, K. et al. Computational approach to study the influence of Mn, Fe, and Ni as additives toward rubber–brass adhesion. Theor Chem Acc 137, 64 (2018). https://doi.org/10.1007/s00214-018-2240-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2240-1

Keywords

Navigation