Computational approach to study the influence of Mn, Fe, and Ni as additives toward rubber–brass adhesion

  • Chian Ye Ling
  • Janne T. Hirvi
  • Katriina Markkula
  • Leo Hillman
  • Tapani A. Pakkanen
Regular Article


The effect of different transition metals (manganese, iron, and nickel) as alternative for cobalt additives toward the performance of rubber adhesion to brass has been investigated by employing modeling approach at density functional theory level. Out of the three different dopants, manganese shows positive results on both sulfide surfaces with notable improvement in adhesion on copper sulfide via carbon–carbon double bond. However, it exhibits lower promotional effect on zinc sulfide than cobalt dopant. Iron, on the other hand, only enhances the adhesion on copper sulfide, while inclusion of nickel displays the lowest promotional effect.


Modeling Transition metals Zinc and copper sulfide Promotional effect 



Financial support provided by the Finnish Funding Agency for Technology and Innovation TEKES and the European Union/European Regional Development Fund (ERDF) for the “Smart Active Materials” project (70058/11) and “Vauhtia Renkaisiin” project (3246/31/2015) is gratefully acknowledged. We acknowledge grants of computer capacity from the Finnish Grid and Cloud Infrastructure (persistent identifier urn:nbn:fi:research-infras-2016072533).


  1. 1.
    Li XR, Wu HY, Cheng BC (2002) Trans Nonferrous Met Soc China 12:169–172Google Scholar
  2. 2.
    Fulton WS (2005) Rubber Chem Technol 78:426–457CrossRefGoogle Scholar
  3. 3.
    van Ooij WJ, Biemond MEF (1984) Rubber Chem Technol 57:686–702CrossRefGoogle Scholar
  4. 4.
    Chandra AK, Biswas A, Mukhopadhyay R, Bhowmick AK (1996) J Adhes Sci Technol 10:431–460CrossRefGoogle Scholar
  5. 5.
    Hamed GR, Huang J (1991) Rubber Chem Technol 64:285–295CrossRefGoogle Scholar
  6. 6.
    Fulton WS, Smith GC, Titchener KJ (2004) Appl Surf Sci 221:69–86CrossRefGoogle Scholar
  7. 7.
    Mandal N, Sajith P, Agrawal SL, Bandyopadhyay S, Mukhopadhyay R, D’Cruz B, Deuri AS (2005) J Adhes 81:911–923CrossRefGoogle Scholar
  8. 8.
    Sajith P, Ummer MT, Mandal N, Mandot SK, Agrawal SL, Bandyopadhyay S, Mukhopadhyay R, D’Cruz B, Deuri AS, Kuriakose AP (2005) J Adhes Sci Technol 19:1475–1491CrossRefGoogle Scholar
  9. 9.
    Fulton WS, Sykes DE, Smith GC (2006) Appl Surf Sci 252:7074–7077CrossRefGoogle Scholar
  10. 10.
    Jeon GS, Kim YM, Seo G (1998) Korean Chem Eng Res 36:179Google Scholar
  11. 11.
    Jeon GS, Seo G (2001) J Adhes Sci Technol 15:689–701CrossRefGoogle Scholar
  12. 12.
    Ling CY, Hirvi JT, Suvanto M, Bazhenov AS, Markkula K, Hillman L, Pakkanen TA (2017) Theor Chem Acc 136:2–7CrossRefGoogle Scholar
  13. 13.
    van Ooij WJ (1977) Surf Sci 68:1–9CrossRefGoogle Scholar
  14. 14.
    Chandra AK, Mukhopadhyay R, Konar J, Ghosh TB, Bhowmick AK (1996) J Mater Sci 31:2667–2676CrossRefGoogle Scholar
  15. 15.
    Buytaert G, Coornaert F, Dekeyser W (2009) Rubber Chem Technol 82:430–441CrossRefGoogle Scholar
  16. 16.
    Persoone P, De Volder P, De Gryse R (1994) Solid State Commun 92:675–680CrossRefGoogle Scholar
  17. 17.
    Hammer GE (2001) J Vac Sci Technol 19:2846–2850CrossRefGoogle Scholar
  18. 18.
    van Ooij WJ (2003) in Crowther B (Ed.) Handbook of Rubber Bonding, Rapra Technology Ltd UK, pp 163–195Google Scholar
  19. 19.
    Fulton WS, Wilson JC (2003) in Crowther B (Ed.) Handbook of Rubber Bonding, Rapra Technology Ltd UK, pp 197–212Google Scholar
  20. 20.
    Ling CY, Hirvi JT, Suvanto M, Bazhenov AS, Ajoviita T, Markkula K, Pakkanen TA (2015) Chem Phys 453–454:7–12CrossRefGoogle Scholar
  21. 21.
    Jaffe JE, Zunger A (2001) Phys Rev B 64:241304CrossRefGoogle Scholar
  22. 22.
    Wright K, Watson GW, Parker SC, Vaughan DJ (1998) Am Mineral 83:141–146CrossRefGoogle Scholar
  23. 23.
    Korzhavyi PA, Abrikosov IA, Johansson B (1999) In MRS proceedings 608:115 Cambridge University PressGoogle Scholar
  24. 24.
    Dubrovin IV, Budennay LD, Mizetskaya IB, Sharkina EV (1983) Izv Akad Nauk SSSR Neorg Mater 19:1816–1819Google Scholar
  25. 25.
    Oliveria M, McMullan RK, Wuensch BJ (1988) Solid State Ionics 28:1332–1337CrossRefGoogle Scholar
  26. 26.
    Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco P, Llunell M (2009) Crystal09 User’s Manual. University of Torino, TorinoGoogle Scholar
  27. 27.
    Perdew JP, Ernzerhof M, Burke K (1996) J Chem Phys 105:9982–9985CrossRefGoogle Scholar
  28. 28.
    Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029–5036CrossRefGoogle Scholar
  29. 29.
    Adamo C, Barone V (1999) J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  30. 30.
    Grimme S (2006) J Comput Chem 27:1787–1799CrossRefPubMedGoogle Scholar
  31. 31.
    Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835CrossRefGoogle Scholar
  32. 32.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Eastern FinlandJoensuuFinland
  2. 2.R & D, Car Tyres, Nokian Tyres plc.NokiaFinland

Personalised recommendations