Advertisement

DFT calculations on subnanometric metal catalysts: a short review on new supported materials

  • Remedios Cortese
  • Roberto Schimmenti
  • Antonio Prestianni
  • Dario Duca
Feature Article

Abstract

Metal clusters have been used in catalysis for a long time, even in industrial production protocols, and a large number of theoretical and experimental studies aimed at characterizing their structure and reactivity, either when supported or not, are already present in the literature. Nevertheless, in the last years the advances made in the control of the synthesis and stabilization of subnanometric clusters promoted a renewed interest in the field. The shape and size of sub-nanometer clusters are crucial in determining their catalytic activity and selectivity. Moreover, if supported, subnanometric clusters could be highly influenced by the interactions with the support that could affect geometric and electronic properties of the catalyst. These effects also present in the case of metal nanoparticles assume an even more prominent role in the “subnano world.” DFT-based simulations are nowadays essential in elucidating and unraveling reaction mechanisms. The outstanding position of this corner of science will be highlighted through a selected number of examples present in the literature, concerning the growth and reactivity of subnanometric supported metal catalysts.

Keywords

DFT calculations Subnanometric metal clusters Heterogeneous catalysis 

Notes

Acknowledgements

Parts of this work were supported by the POLYCAT project (Modern polymer-based catalysts and microflow conditions as key elements of innovations in fine chemical synthesis), funded by the 7th Framework Programme of the European Community; GA: CP-IP 246095; http://polycat-fp7.eu/ and by the SusFuelCat project (Sustainable fuel production by aqueous phase reforming–understanding catalysis and hydrothermal stability of carbon supported noble metals), funded by the 7th Framework Programme of the European Community; GA: CP-IP 310490; http://cordis.europa.eu/projects/rcn/106702_en.html.

References

  1. 1.
    Schmid G, Fenske D (2010) Philos Trans R Soc A 368:1207–1210CrossRefGoogle Scholar
  2. 2.
    Cleveland CL, Landman U, Schaaff TG, Shafigullin MN, Stephens PW, Whetten RL (1997) Phys Rev Lett 79:1873–1876CrossRefGoogle Scholar
  3. 3.
    van Santen RA, Neurock M (2006) Molecular heterogeneous catalysis. Wiley, New YorkCrossRefGoogle Scholar
  4. 4.
    Yau SH, Varnavski O, Goodson T (2013) Acc Chem Res 46(7):1506–1516CrossRefGoogle Scholar
  5. 5.
    Baxter ET, Ha MA, Cass AC, Alexandrova AN, Anderson SL (2017) ACS Catal 7(5):3322–3335CrossRefGoogle Scholar
  6. 6.
    Tyo EC, Vajda S (2015) Nat Nanotechnol 10:577–586CrossRefGoogle Scholar
  7. 7.
    Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC, Teschner D, Schlögl R, Pellin MJ, Curtiss LA, Vajda S (2010) Science 328(5975):224–228CrossRefGoogle Scholar
  8. 8.
    Kaden WE, Wu T, Kunkel WA, Anderson SL (2009) Science 326(5954):826–829CrossRefGoogle Scholar
  9. 9.
    Oliver-Messeguer J, Liu L, García-García S, Canós-Giménez C, Domínguez I, Gavara R, Doménech-Carbó A, Concepción P, Leyva-Pérez A, Corma A (2015) J Am Chem Soc 137(11):3894–3900CrossRefGoogle Scholar
  10. 10.
    Oliver-Messeguer J, Dominguez I, Gavara R, Leyva-Pérez A, Corma A (2017) ChemCatChem 9(8):1429–1435CrossRefGoogle Scholar
  11. 11.
    Liu C, Yang B, Tyo E, Seifert S, De Bartolo J, von Issendorff B, Zapol P, Vajda S, Curtiss LA (2015) J Am Chem Soc 137(27):8676–8679CrossRefGoogle Scholar
  12. 12.
    Zhang S, Chang C, Huang Z, Li J, Wu Z, Ma Y, Zhang Z, Wang Y, Qu Y (2016) J Am Chem Soc 138(8):2629–2637CrossRefGoogle Scholar
  13. 13.
    Kulkarni A, Lobo-Lapidus RJ, Gates BC (2010) Chem Commun 46:5997–6015CrossRefGoogle Scholar
  14. 14.
    Zhang C, Michaelides A, King DA, Jenkins SJ (2010) J Am Chem Soc 132(7):2175–2182CrossRefGoogle Scholar
  15. 15.
    Gao Y, Shao N, Pei Y, Chen Z, Zeng XC (2011) ACS Nano 5(10):7818–7829CrossRefGoogle Scholar
  16. 16.
    Zhang P, Feist J, Rubio A, García-González P, García-Vidal FJ (2014) Phys Rev B 90:161407–161412CrossRefGoogle Scholar
  17. 17.
    Prestianni A, Ferrante F, Sulman EM, Duca D (2014) J Phys Chem C 118:21006–21013CrossRefGoogle Scholar
  18. 18.
    Debnath S, Said SM, Rabilloud F, Chatterjee A, Roslan MF, Mainal A, Mahmood MS (2015) RSC Adv 5:98583–98592CrossRefGoogle Scholar
  19. 19.
    Ferrante F, Prestianni A, Cortese R, Schimmenti R, Duca D (2016) J Phys Chem C 120:12022–12031CrossRefGoogle Scholar
  20. 20.
    Demiroglu I, Yao K, Hussein HA, Johnston RL (2017) J Phys Chem C 121(20):10773–10780CrossRefGoogle Scholar
  21. 21.
    Lacaze-Dufaure C, Roques J, Mijoule C, Sicilia E, Russo N, Alexiev V, Mineva T (2011) J Mol Catal A Chem 341:28–34CrossRefGoogle Scholar
  22. 22.
    Prestianni A, Ferrante F, Simakova OA, Duca D, Murzin DYu (2013) Chem Eur J 19:4577–4585CrossRefGoogle Scholar
  23. 23.
    Ferrante F, Prestianni A, Duca D (2014) J Phys Chem C 118:551–558CrossRefGoogle Scholar
  24. 24.
    Xu C, Lee M, Wang Y, Cantu DC, Li J, Glezakou V, Rousseau R (2017) ACS Nano 11(2):1649–1658CrossRefGoogle Scholar
  25. 25.
    Zhai H, Alexandrova AN (2017) ACS Catal 7:1905–1911CrossRefGoogle Scholar
  26. 26.
    Duca D, Barone G, Giuffrida S, Varga Zs (2007) J Comput Chem 28:2483–2499CrossRefGoogle Scholar
  27. 27.
    Duca D, Botár L, Vidóczy T (1996) J Catal 162:260–267CrossRefGoogle Scholar
  28. 28.
    Duca D, Baranyai P, Vidóczy T (1998) J Comput Chem 19:396–403CrossRefGoogle Scholar
  29. 29.
    Cremer PS, Su X, Shen YR, Somorjai GA (1996) J Am Chem Soc 118:2942–2949CrossRefGoogle Scholar
  30. 30.
    Boudart M (1995) Chem Rev 95:661–666CrossRefGoogle Scholar
  31. 31.
    Crampton AS, Rötzer MD, Ridge CJ, Schweinberger FF, Heiz U, Yoon B, Landman U (2016) Nat Commun 7. Article number: 10389Google Scholar
  32. 32.
    Yang B, Liu C, Halder A, Tyo EC, Martinson ABF, Seifert S, Zapol P, Curtiss LA, Vajda S (2017) J Phys Chem C 121(19):10406–10412CrossRefGoogle Scholar
  33. 33.
    Prestianni A, Crespo-Quesada M, Cortese R, Ferrante F, Kiwi-Minsker L, Duca D (2014) J Phys Chem C 118:3119–3128CrossRefGoogle Scholar
  34. 34.
    Crespo-Quesada M, Yoon S, Jin M, Prestianni A, Cortese R, Cárdenas-Lizana F, Duca D, Weidenkaff A, Kiwi-Minsker L (2015) J Phys Chem C 119:1101–1107CrossRefGoogle Scholar
  35. 35.
    Hakkinen H, Abbet S, Sanchez A, Heiz U, Landman U (2003) Angew Chem Int Ed 42(11):1297–1300CrossRefGoogle Scholar
  36. 36.
    Campbell CT (2012) Nat Chem 4(8):597–598CrossRefGoogle Scholar
  37. 37.
    Ahmadi M, Mistry H, Roldan Cuenya B (2016) J Phys Chem Lett 7:3519–3533CrossRefGoogle Scholar
  38. 38.
    Lopez N, Nørskov JK (2002) J Am Chem Soc 124(38):11262–11263CrossRefGoogle Scholar
  39. 39.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115(2):301–309CrossRefGoogle Scholar
  40. 40.
    Wang GM, BelBruno JJ, Kenny SD, Smith R (2005) Surf Sci 576(1):107–115CrossRefGoogle Scholar
  41. 41.
    Lin S, Pei Y (2014) J Phys Chem C 118(35):20346–20356CrossRefGoogle Scholar
  42. 42.
    Prestianni A, Martorana A, Ciofini I, Labat F, Adamo C (2008) J Phys Chem C 112:18061–18066CrossRefGoogle Scholar
  43. 43.
    Prestianni A, Martorana A, Labat F, Ciofini I, Adamo C (2009) J Mol Struct THEOCHEM 903:34–40CrossRefGoogle Scholar
  44. 44.
    Okumura M, Haruta M (2016) Catal Today 259:81–86CrossRefGoogle Scholar
  45. 45.
    Manzoli M, Vindigni F, Tabakova T, Lamberti C, Dimitrov D, Ivanov K, Agostini G (2017) J Mater Chem A 5:2083–2094CrossRefGoogle Scholar
  46. 46.
    Lei X, Mbamalu G, Qin C (2017) J Phys Chem C 121:2635–2642CrossRefGoogle Scholar
  47. 47.
    Schimmenti R, Cortese R, Duca D, Mavrikakis M (2017) ChemCatChem 9:1610–1620CrossRefGoogle Scholar
  48. 48.
    Benziger RJMJB (1979) Surf Sci 79:394–412CrossRefGoogle Scholar
  49. 49.
    Sun YKHW (1991) J Chem Phys 94:4587–4599CrossRefGoogle Scholar
  50. 50.
    Herron JA, Scaranto J, Ferrin P, Li S, Mavrikakis M (2014) ACS Catal 4:4434–4445CrossRefGoogle Scholar
  51. 51.
    Choi SI, Herron JA, Scaranto J, Huang H, Wang Y, Xia T, Lv X, Park J, Peng H, Mavrikakis M, Xia Y (2015) ChemCatChem 7:2077–2084CrossRefGoogle Scholar
  52. 52.
    Scaranto J, Mavrikakis M (2016) Surf Sci 648:201–211CrossRefGoogle Scholar
  53. 53.
    Cárdenas-Lizana F, Berguerand C, Yuranov I, Kiwi-Minsker L (2013) J Catal 301:103–111CrossRefGoogle Scholar
  54. 54.
    Schimmenti R, Cortese R, Ferrante F, Prestianni A, Duca D (2016) Phys Chem Chem Phys 18:1750–1757CrossRefGoogle Scholar
  55. 55.
    Cortese R, Schimmenti R, Ferrante F, Prestianni A, Decarolis D, Duca D (2017) J Phys Chem C 121(25):13606–13616CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica e Chimica dell’Università degli Studi di PalermoPalermoItaly
  2. 2.Department of Chemical and Biological EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations