Skip to main content

Theoretical perspectives on carbocation chemistry from energy decomposition analysis

Abstract

Understanding carbocation formation is a central concern for all chemical sciences. The widely accepted explanation in terms of inductive/field and delocalization effects is based on quantities that are not straightforwardly computed in popular electronic structure methods. This work reports an alternative approach to the carbocation formation problem based on energy decomposition analysis, more specifically, CMOEDA. The order of stability for carbocations formation was successfully accounted in terms of the energy components. The focus of the analysis shifts from the product of the reaction, i.e., the carbocation itself, to the reactant neutral molecule. Notably, exchange repulsions are the largest energy contribution to increase carbocation stability in the order methyl, primary, secondary and tertiary. Polarization (orbital relaxation) plays a secondary role. Insertion of bulky groups increases the repulsion with the incipient anion (a hydride ion) and decreases the strength of the C–H bond. This pattern is confirmed for several other hydrocarbon cases. Additional systems like halomethanes, amino- and nitro-derivatives are also described.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Aue DH (2011) Wiley Interdiscip Rev Comput Mol Sci 1:487–508

    CAS  Article  Google Scholar 

  2. 2.

    Naredla RR, Klumpp DA (2013) Chem Rev 113:6905–6948

    CAS  Article  Google Scholar 

  3. 3.

    Olah GA (2001) J Org Chem 66:5944–5957

    Google Scholar 

  4. 4.

    Alamiddine A, Humbel S (2014) Front Chem 1:1–9

    Article  Google Scholar 

  5. 5.

    Jalife S, Martínes-Guajardo G, Zavala-Oseguera C, Fernández-Herrera M, Schleyer P, Merino G (2014) Eur J Org Chem 7955–7959

  6. 6.

    Sandbeck DJS, Markewich DJ, East ALL (2016) J Org Chem 81:1410–1415

    Article  Google Scholar 

  7. 7.

    Moss R (2014) J Phys Org Chem 27:374–379

    CAS  Article  Google Scholar 

  8. 8.

    Chiavarino B, Crestoni ME, Fornarini S, Lemaire J, Aleese LM, Maître P (2004) ChemPhysChem 5:1679–1685

    CAS  Article  Google Scholar 

  9. 9.

    Robbins AM, Jin P, Brinck T, Murray JS, Politzer P (2006) Int J Quantum Chem 106:2904–2909

    CAS  Article  Google Scholar 

  10. 10.

    Morokuma K (1971) J Chem Phys 55:1236–1244

    CAS  Article  Google Scholar 

  11. 11.

    Lynch K, Maloney A, Sowell A, Wang C, Mo Y, Karty JM (2015) Phys Chem Chem Phys 17:138–144

    CAS  Article  Google Scholar 

  12. 12.

    Su P, Li H (2009) J Chem Phys 131:014102-1–014102-15

    Google Scholar 

  13. 13.

    te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    Article  Google Scholar 

  14. 14.

    Stasyuk OA, Szatylowicz H, Krygowski TM, Fonseca Guerra C (2016) Phys Chem Chem Phys 18:11624–11633

    CAS  Article  Google Scholar 

  15. 15.

    Dancini-Pontes I, Fernandes-Machado N, Souza M, Pontes RM (2015) App Catal A 491:86–93

    CAS  Article  Google Scholar 

  16. 16.

    Banu T, Ghosh D, Debnath T, Sen K, Das AK (2015) RSC Adv 5:57647–57656

    CAS  Article  Google Scholar 

  17. 17.

    Baranac-Stojanović M (2015) Struct Chem 26:989–996

    Article  Google Scholar 

  18. 18.

    Aleksić J, Stojanović M, Baranac-Stajanović M (2015) J Org Chem 80:10197–10207

    Article  Google Scholar 

  19. 19.

    Karir G, Fatima M, Viswanathan KS (2016) J Chem Sci 128:1557–1569

    CAS  Article  Google Scholar 

  20. 20.

    Thellamurege N, Hirao H (2013) Molecules 18:6782–6791

    CAS  Article  Google Scholar 

  21. 21.

    Pontes RM, Basso EA, Martins DE, Madeira RM (2017) J Phys Chem A 121:4993–5004

    CAS  Article  Google Scholar 

  22. 22.

    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    CAS  Article  Google Scholar 

  23. 23.

    Kiprof P, Miller SR, Frank MA (2006) J Mol Struct (THEOCHEM) 764:61–67

    CAS  Article  Google Scholar 

  24. 24.

    Pople JA (1987) Chem Phys Lett 137:10–12

    CAS  Article  Google Scholar 

  25. 25.

    Curtiss LA, Pople JA (1998) J Chem Phys 88:7405–7409

    Article  Google Scholar 

  26. 26.

    Liang C, Hamilton TP, Schaefer HF (1990) J Chem Phys 92:3653–3658

    CAS  Article  Google Scholar 

  27. 27.

    Psciuk BT, Bendererskii VA, Schlegel HB (2007) Theor Chem Acc 118:75–80

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rodrigo M. Pontes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pontes, R.M. Theoretical perspectives on carbocation chemistry from energy decomposition analysis. Theor Chem Acc 137, 56 (2018). https://doi.org/10.1007/s00214-018-2232-1

Download citation

Keywords

  • Carbocations
  • CMOEDA
  • Energy decomposition analysis (EDA)
  • Theoretical study