Skip to main content
Log in

Structure, fragmentation patterns, and electronic properties of small indium oxide clusters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A theoretical study of nanoparticles of indium oxide, one of the most relevant transparent conducting materials, is reported. By means of Density Functional Theory in the generalized gradient approximation, we investigated the atomic and electronic structures of the neutral and charged indium oxide clusters \(\text{In}_n\text{O}_m^{0/\pm }\) with n = 1–6 and m = 1–8, as well as related properties like adiabatic ionization potentials and electron affinities. Based on total energy differences between the obtained global minimum configurations of parent clusters and possible fragments, we explored the respective fragmentation channels for cationic clusters and compared our results with those recently observed in Photodissociation measurements (Knight et al. in IJMS 304:29, 2011). The overall good agreement between theory and experiment provides compelling evidence of the calculated properties of these systems, whose knowledge is essential to take advantage of the nanoscale in future technological applications of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Liang YX, Li SQ, Nie L, Wang YG, Wang TH (2006) Appl Phys Lett 88:193119

    Article  Google Scholar 

  2. Kim DW, Hwang IS, Kwon SJ, Kang HY, Park KS, Choi YJ, Choi K, Par JG (2007) Nano Lett 7:3041–3045

    Article  CAS  Google Scholar 

  3. Curreli M, Li C, Sun Y, Lei B, Gundersen MA, Thompson M, Zhou C (2005) J Am Chem Soc 127:6922–6823

    Article  CAS  Google Scholar 

  4. Bianchoi S, Comoni E, Ferroni M, Faglia G, Vomiero A, Sberveglieri G (2006) Sens Actuators B 118:204–207

    Article  Google Scholar 

  5. Li B, Xie Y, Jing M, Rong G, Tang Y, Zhang G (2006) Langmuir 22:9380–9385

    Article  CAS  Google Scholar 

  6. Xu J, Wang X, Shen J (2006) Sens Actuators B 115:642–646

    Article  CAS  Google Scholar 

  7. Gurlo A, Ivanovskaya M, Barsan N, Schweizer-Berberich M, Weimar U, Gopel W, Dieguez A (1997) Sens Actuators B 44:327–333

    Article  Google Scholar 

  8. Murali A, Barve A, Leppert VJ, Risbud SH, Kennedy IM, Kennedy Lee HWH (2001) Nano Lett 1:287–289

    Article  CAS  Google Scholar 

  9. Epifani M, Siciliano P (2004) J Am Chem Soc 126:4078–4079

    Article  CAS  Google Scholar 

  10. Seo WS, Jo HH, Lee K, Park JT (2003) Adv Mater 15:795–797

    Article  CAS  Google Scholar 

  11. Zhou H, Cai W, Zhang L (1999) Mater Res Bull 34:845–849

    Article  CAS  Google Scholar 

  12. Shi S, Liu Y, Li Y, Deng B, Zhan C, Jiang GA (2016) Comput Theor Chem 1079:47–56

    Article  CAS  Google Scholar 

  13. Knight AM, Bandyopadhyay B, Anfuso CL, Molek KS, Duncan MA (2011) IJMS 304:29–35

    CAS  Google Scholar 

  14. Janssens E, Neukermans S, Vanhoutte F, Silverans RE, Lievens P, Navarro-Vazquez A, Schleyer PVR (2003) J Chem Phys 118:5862–5871

    Article  CAS  Google Scholar 

  15. Mukhopadhyay S, Gowtham S, Pandey R, Costales A (2010) J Mol Struct THEOCHEM 948:31–35

    Article  CAS  Google Scholar 

  16. Zhanpeisov NU, Nakatani H, Fukumura H (2011) Res Chem Intermed 37:647–658

    Article  CAS  Google Scholar 

  17. Walsh A, Woodley SM (2010) Phys Chem Chem Phys 12:8446–8453

    Article  CAS  Google Scholar 

  18. Woodley SM (2011) Proc R Soc A 467:2020–2042

    Article  CAS  Google Scholar 

  19. Sierka M, Dobler J, Sauer J, Santambrogio G, Brummer M, Woste L, Janssens E, Meijer G, Asmis KR (2007) Angew Chem Int Ed 46:3372–3375

    Article  CAS  Google Scholar 

  20. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) J Phys Condens Matter 14:2745–2779

    Article  CAS  Google Scholar 

  21. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3865

    Article  CAS  Google Scholar 

  22. Troullier N, Martins JL (1991) Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

  23. Kleinman L, Bylander DM (1982) Phys Rev Lett 48:1425–1428

    Article  CAS  Google Scholar 

  24. Louie SG, Froyen S, Cohen ML (1982) Phys Rev B 26:1738–1742

    Article  CAS  Google Scholar 

  25. Aguilera-del-Toro RH, Aguilera-Granja JF, Vega A, Balbás LC (2014) Phys Chem Chem Phys 16:21732–21741

    Article  CAS  Google Scholar 

  26. Kresse G, Hafner J (1993) Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  27. Kresse G, Furthmüller J (1996) Phys Rev B 56:11169–11186

    Article  Google Scholar 

  28. Zhang Y, Yang W (1998) Phy Rev Lett 80:890

    Article  CAS  Google Scholar 

  29. Klimes J, Bowler DR, Michaelides A (2010) J Phys Condens Matter 22:022201

    Article  Google Scholar 

  30. Boys SF, Bernardy F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  31. Bredas JL (2014) Mater Horiz 1:17–19

    Article  CAS  Google Scholar 

  32. DeMaria G, Drowart J (1959) J Chem Phys 31:1076–1081

    Article  CAS  Google Scholar 

  33. Gausa M, Ganteför G, Lutz HO, Meiwes-Broer KH (1990) Int J Mass Spectrom Ion Processes 101:227–237

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (Project FIS2014-59279-P). R.H.A-T acknowledges the financial support provided by the University of Valladolid for a research visit and a fellowship from CONACyT (Mexico, scholarship 415121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Aguilera-Granja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilera-del-Toro, R.H., Aguilera-Granja, F., Balbás, L.C. et al. Structure, fragmentation patterns, and electronic properties of small indium oxide clusters. Theor Chem Acc 137, 54 (2018). https://doi.org/10.1007/s00214-018-2231-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2231-2

Keywords

Navigation