Theoretical investigation on the effect of fluorine and carboxylate substitutions on the performance of benzodithiophene-diketopyrrolopyrrole-based polymer solar cells

  • Zhi-Wen Zhao
  • Qing-Qing Pan
  • Shui-Xing Wu
  • Yong Wu
  • Min Zhang
  • Liang Zhao
  • Ting Gao
  • Yun Geng
  • Zhong-Min Su
Regular Article


Three donor–acceptor (D–A) polymers 24 were designed and investigated based on the reported polymer 1 with benzo[1,2-b:4,5-b′]dithiophene (BDT) as D fragment and diketopyrrolopyrrole (DPP) as A fragment. The fluorine substitutions on the BDT unit in molecule 2 have less influence on the lowest unoccupied molecular orbital (LUMO) compared with the carboxylate substitutions on the BDT unit in 3 and 4. The charge transfer rate (kinter-CT) of molecule 4 is the largest, which determines that molecule 4 has a priority in the interfacial process among these investigated molecules with the same acceptor PC 61 BM. The designed molecules 24 show larger open-circuit voltages (Voc), relatively narrower bandgaps and higher value of kinter-CT/kinter-CR than 1. Moreover, the results demonstrate that fluorine and carboxylate substitutions on molecule 4 show a synergistic effect on the FMO energy levels and electron interfacial process, which is expected to help the further understanding of the design rules for polymer donor materials in polymer solar cells.


Polymer solar cells DFT Charge transfer Fluorine Carboxylate 



The authors gratefully acknowledge financial support from National Basic Research Program of China (973 Program—2013CB834801), National Natural Science Foundation of China (21673036, 21771035, 21663011, 21603018), Thirteen Five-Year Sci-tech Research Guideline of the Education Department of Jilin Prov. China and National Natural Science Foundation of Jilin Prov. (No.20150101006JC), the Science and Technology Development Planning of Jilin Province (20150204041GX), and the Education Department of Jilin Province (2015552).

Supplementary material

214_2018_2228_MOESM1_ESM.docx (2.8 mb)
Supplementary material 1 (DOCX 2818 kb)


  1. 1.
    Luo G, Ren X, Zhang S, Wu H, Choy WC, He Z, Cao Y (2016) Recent advances in organic photovoltaics: device structure and optical engineering optimization on the nanoscale. Small 12(12):1547–1571. CrossRefGoogle Scholar
  2. 2.
    Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258(5087):1474–1476CrossRefGoogle Scholar
  3. 3.
    Yin Z, Wei J, Zheng Q (2016) Interfacial materials for organic solar cells: recent advances and perspectives. Adv Sci 3(8):1500362. CrossRefGoogle Scholar
  4. 4.
    Ashraf RS, Meager I, Nikolka M, Kirkus M, Planells M, Schroeder BC, Holliday S, Hurhangee M, Nielsen CB, Sirringhaus H, McCulloch I (2015) Chalcogenophene comonomer comparison in small band gap diketopyrrolopyrrole-based conjugated polymers for high-performing field-effect transistors and organic solar cells. J Am Chem Soc 137(3):1314–1321. CrossRefGoogle Scholar
  5. 5.
    Douglas JD, Griffini G, Holcombe TW, Young EP, Lee OP, Chen MS, Fréchet JMJ (2012) Functionalized isothianaphthene monomers that promote quinoidal character in donor–acceptor copolymers for organic photovoltaics. Macromolecules 45(10):4069–4074. CrossRefGoogle Scholar
  6. 6.
    Graetzel M, Janssen RA, Mitzi DB, Sargent EH (2012) Materials interface engineering for solution-processed photovoltaics. Nature 488(7411):304–312. CrossRefGoogle Scholar
  7. 7.
    Yao HF, Ye L, Zhang H, Li SS, Zhang SQ, Hou JH (2016) Molecular design of benzodithiophene-based organic photovoltaic materials. Chem Rev 116(12):7397–7457. CrossRefGoogle Scholar
  8. 8.
    Hou JH, Park MH, Zhang SH, Yao Y, Chen LM, Li JH, Yang Y (2008) Bandgap and Molecular energy level control of conjugated polymer photovoltaic materials based on benzo[1,2-b:4,5-b’]dithiophene. Macromolecules 41(16):6012–6018. CrossRefGoogle Scholar
  9. 9.
    Zhang SH, Ye L, Hou JH (2016) Breaking the 10% efficiency barrier in organic photovoltaics: morphology and device optimization of well-known PBDTTT polymers. Adv Energy Mater 6(11):1502529. CrossRefGoogle Scholar
  10. 10.
    Zheng Z, Zhang SH, Zhang JQ, Qin YP, Li WN, Yu RN, Wei ZX, Hou JH (2016) Over 11% efficiency in tandem polymer solar cells featured by a low-band-gap polymer with fine-tuned properties. Adv Mater 28(25):5133–5138. CrossRefGoogle Scholar
  11. 11.
    Huo LJ, Hou JH, Chen HY, Zhang SQ, Jiang Y, Chen TL, Yang Y (2009) Bandgap and molecular level control of the low-bandgap polymers based on 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione toward highly efficient polymer solar cells. Macromolecules 42(17):6564–6571. CrossRefGoogle Scholar
  12. 12.
    Li Z, Zhang YG, Tsang SW, Du XM, Zhou JY, Tao Y, Ding JF (2011) Alkyl side chain impact on the charge transport and photovoltaic properties of benzodithiophene and diketopyrrolopyrrole-based copolymers. J Phys Chem C 115(36):18002–18009. CrossRefGoogle Scholar
  13. 13.
    Li W, Hendriks KH, Furlan A, Roelofs WS, Wienk MM, Janssen RA (2013) Universal correlation between fibril width and quantum efficiency in diketopyrrolopyrrole-based polymer solar cells. J Am Chem Soc 135(50):18942–18948. CrossRefGoogle Scholar
  14. 14.
    Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115(23):12666–12731. CrossRefGoogle Scholar
  15. 15.
    Price SC, Stuart AC, Yang L, Zhou H, You W (2011) Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. J Am Chem Soc 133(12):4625–4631. CrossRefGoogle Scholar
  16. 16.
    Chen Y, Cui Y, Zhang SH, Hou JH (2015) Molecular design toward efficient polymer solar cells processed by green solvents. Polym Chem 6(22):4089–4095. CrossRefGoogle Scholar
  17. 17.
    Saadeh H, Lu L, He F, Bullock JE, Wang W, Carsten B, Yu L (2012) Polyselenopheno[3,4-b]selenophene for highly efficient bulk heterojunction solar cells. ACS Macro Lett 1(3):361–366. CrossRefGoogle Scholar
  18. 18.
    Liu Y, Zhao W, Wu Y, Zhang J, Li G, Li W, Ma W, Hou J, Bo Z (2016) Enhancing the power conversion efficiency of polymer solar cells to 9.26% by a synergistic effect of fluoro and carboxylate substitution. J Mater Chem A 4(21):8097–8104. CrossRefGoogle Scholar
  19. 19.
    Alberga D, Ciofini I, Mangiatordi GF, Pedone A, Lattanzi G, Roncali J, Adamo C (2017) Effects of substituents on transport properties of molecular materials for organic solar cells: a theoretical investigation. Chem Mater 29(2):673–681. CrossRefGoogle Scholar
  20. 20.
    Risko C, McGehee MD, Brédas JL (2011) A quantum-chemical perspective into low optical-gap polymers for highly-efficient organic solar cells. Chem Sci 2(7):1200–1218. CrossRefGoogle Scholar
  21. 21.
    Li SB, Duan YA, Geng Y, Li HB, Zhang JZ, Xu HL, Zhang M, Su ZM (2014) A designed bithiopheneimide-based conjugated polymer for organic photovoltaic with ultrafast charge transfer at donor/PC(71)BM interface: theoretical study and characterization. Phys Chem Chem Phys 16(47):25799–25808. CrossRefGoogle Scholar
  22. 22.
    Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, (2013) Gaussian, Inc., Wallingford CTGoogle Scholar
  23. 23.
    Ku J, Lansac Y, Jang YH (2011) Time-dependent density functional theory study on benzothiadiazole-based low-band-gap fused-ring copolymers for organic solar cell applications. J Phys Chem C 115(43):21508–21516. CrossRefGoogle Scholar
  24. 24.
    Liu XR, Li M, He RX, Shen W (2014) Theoretical investigations on fluorinated and cyano copolymers for improvements of photovoltaic performances. Phys Chem Chem Phys 16(1):311–323. CrossRefGoogle Scholar
  25. 25.
    Grimm B, Risko C, Azoulay JD, Brédas JL, Bazan GC (2013) Structural dependence of the optical properties of narrow bandgap semiconductors with orthogonal donor–acceptor geometries. Chem Sci 4(4):1807. CrossRefGoogle Scholar
  26. 26.
    Chochos CL, Avgeropoulos A, Lidorikis E (2013) Theoretical study of phenyl-substituted indacenodithiophene copolymers for high performance organic photovoltaics. Journal of Chemical Physics 138(6):064901. CrossRefGoogle Scholar
  27. 27.
    Duan YA, Geng Y, Li HB, Jin JL, Wu Y, Su ZM (2013) Theoretical characterization and design of small molecule donor material containing naphthodithiophene central unit for efficient organic solar cells. J Comput Chem 34(19):1611–1619. CrossRefGoogle Scholar
  28. 28.
    Zhao ZW, Pan QQ, Li SB, Duan YA, Geng Y, Zhang M, Su ZM (2017) A theoretical exploration of the effect of fluorine and cyano substitutions in diketopyrrolopyrrole-based polymer donor for organic solar cells. J Mol Graph Model. Google Scholar
  29. 29.
    Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  30. 30.
    O’Boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845CrossRefGoogle Scholar
  31. 31.
    Pan QQ, Li SB, Wu Y, Sun GY, Geng Y, Su ZM (2016) A comparative study of a fluorene-based non-fullerene electron acceptor and PC 61 BM in an organic solar cell at a quantum chemical level. RSC Adv 6(84):81164–81173. CrossRefGoogle Scholar
  32. 32.
    Liu T, Troisi A (2011) Absolute rate of charge separation and recombination in a molecular model of the P 3 HT/PCBM interface. J Phys Chem C 115(5):2406–2415. CrossRefGoogle Scholar
  33. 33.
    Li Y, Pullerits T, Zhao M, Sun M (2011) Theoretical characterization of the PC60BM:PDDTT model for an organic solar cell. J Phys Chem C 115(44):21865–21873. CrossRefGoogle Scholar
  34. 34.
    Graham KR, Cabanetos C, Jahnke JP, Idso MN, El Labban A, Ngongang Ndjawa GO, Heumueller T, Vandewal K, Salleo A, Chmelka BF, Amassian A, Beaujuge PM, McGehee MD (2014) Importance of the donor:fullerene intermolecular arrangement for high-efficiency organic photovoltaics. J Am Chem Soc 136(27):9608–9618. CrossRefGoogle Scholar
  35. 35.
    Li SB, Duan YA, Geng Y, Gao HZ, Qiu YQ, Su ZM (2015) Theoretical design and characterization of pyridalthiadiazole-based chromophores with fast charge transfer at donor/acceptor interface toward small molecule organic photovoltaics. RSC Adv 5(37):29401–29411. CrossRefGoogle Scholar
  36. 36.
    Marcus RA (1993) Electron transfer reactions in chemistry: theory and experiment (Nobel Lecture). Angew Chem Int Ed Engl 32(8):1111–1121. CrossRefGoogle Scholar
  37. 37.
    Zhong W, Liang J, Hu S, Jiang XF, Ying L, Huang F, Yang W, Cao Y (2016) Effect of monofluoro substitution on the optoelectronic properties of Benzo[c][1,2,5]thiadiazole based organic semiconductors. Macromolecules 49(16):5806–5816. CrossRefGoogle Scholar
  38. 38.
    Uy RL, Yan L, Li W, You W (2014) Tuning fluorinated benzotriazole polymers through alkylthio substitution and selenophene incorporation for bulk heterojunction solar cells. Macromolecules 47(7):2289–2295. CrossRefGoogle Scholar
  39. 39.
    Mo D, Wang H, Chen H, Qu S, Chao P, Yang Z, Tian L, Su Y-A, Gao Y, Yang B, Chen W, He F (2017) Chlorination of low-band-gap polymers: toward high-performance polymer solar cells. Chem Mater 29(7):2819–2830. CrossRefGoogle Scholar
  40. 40.
    Li H, Zhao Y, Zhu X, Xia B, Lu K, Yuan L, Zhang J, Guo X, Yan W, Wei Z (2017) The effect of tuning chemical structure on the open-circuit voltage and photovoltaic performance of narrow band-gap polymers. J Polym Sci Part A: Polym Chem 55(4):699–706. CrossRefGoogle Scholar
  41. 41.
    Qiu M, Zhu D, Yan L, Wang N, Han L, Bao X, Du Z, Niu Y, Yang R (2016) Strategy to manipulate molecular orientation and charge mobility in D–A type conjugated polymer through rational fluorination for improvements of photovoltaic performances. J Phys Chem C 120(40):22757–22765. CrossRefGoogle Scholar
  42. 42.
    Lan L, Chen Z, Hu Q, Ying L, Zhu R, Liu F, Russell TP, Huang F, Cao Y (2016) High-performance polymer solar cells based on a wide-bandgap polymer containing Pyrrolo[3,4-f]benzotriazole-5,7-dione with a power conversion efficiency of 8.63%. Adv Sci 3(9):1600032.
  43. 43.
    Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18(6):789–794. CrossRefGoogle Scholar
  44. 44.
    Qiu M, Brandt RG, Niu Y, Bao X, Yu D, Wang N, Han L, Yu L, Xia S, Yang R (2015) Theoretical study on the rational design of cyano-substituted P3HT materials for OSCs: substitution effect on the improvement of photovoltaic performance. J Phys Chem C 119(16):8501–8511. CrossRefGoogle Scholar
  45. 45.
    Cui YH, Li P, Song CP, Zhang HY (2016) Terminal modulation of D − π–A small molecule for organic photovoltaic materials: a theoretical molecular design. J Phys Chem C 120(51):28939–28950. CrossRefGoogle Scholar
  46. 46.
    Li SB, Geng Y, Duan YA, Sun GY, Zhang M, Qiu YQ, Su ZM (2016) Theoretical study on the charge transfer mechanism at donor/acceptor interface: why TTF/TCNQ is inadaptable to photovoltaics? J Chem Phys 145(24):244705. CrossRefGoogle Scholar
  47. 47.
    Gao F, Inganas O (2014) Charge generation in polymer-fullerene bulk-heterojunction solar cells. Phys Chem Chem Phys 16(38):20291–20304. CrossRefGoogle Scholar
  48. 48.
    Leng C, Qin H, Si Y, Zhao Y (2014) Theoretical prediction of the rate constants for exciton dissociation and charge recombination to a triplet state in PCPDTBT with different fullerene derivatives. J Phys Chem C 118:1843–1855CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Functional Material Chemistry, Faculty of ChemistryNortheast Normal UniversityChang ChunPeople’s Republic of China
  2. 2.School of Chemistry and Chemistry EngineeringHainan Normal UniversityHaikouChina
  3. 3.School of Pharmaceutical SciencesChangchun University of Chinese MedicineChangchunPeople’s Republic of China
  4. 4.School of Information Science and TechnologyNortheast Normal UniversityChangchunPeople’s Republic of China

Personalised recommendations