Abstract
Periodic boundary conditions as implemented within a linear combination of atomic orbital approach are applied to determine the infrared spectra of methane, acetylene, ethylene, and ethane in MOF-74-Mg. Intensities and frequency shifts with respect to the molecules in the gas phase are described and discussed with respect to geometrical arrangements and structural modifications of the molecules adsorbed in the framework. Given the predictive nature of the work and in the attempt of providing a better ground for comparison with experimental spectroscopic observations, different molecular loadings are considered where one (low loading), three (medium loading), and six (full loading) molecules are adsorbed at the primary adsorption binding site identified by the MgO5 inorganic brick of the MOF structure. In addition, enthalpies of adsorption are reported for methane and acetylene whose addition to previous works by the same authors, provides an overall assessment at electronic structure level of the energetic behavior of C1–C4 hydrocarbons in MOF-74-Mg. Calculations are conducted at B3LYP-D2* level of theory as implemented in the Crystal14 program.
This is a preview of subscription content, access via your institution.






References
Kitagawa S, Kitaura R, Noro S (2004) Angew Chem Int Ed 43(18):2334–2375
Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Nature 423(6941):705–714
Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Chem Soc Rev 38(5):1450–1459
Li J-R, Kupper RJ, Zhou H-C (2009) Chem Soc Rev 5(38):1477–1504
Li JR, Sculley J, Zhou HC (2012) Chem Rev 112(2):869–932
Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) Science 341(6149):974
Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Ferey G, Morris RE, Serre C (2012) Chem Rev 112(2):1232–1268
Czaja AU, Trukhan N, Muller U (2009) Chem Soc Rev 38(5):1284–1293
Ferey G, Mellot-Draznieks C, Serre C, Millange F (2005) Acc Chem Res 38(4):217–225
Ferey G (2008) Chem Soc Rev 37(1):191–214
Yaghi OM, Li HL, Davis C, Richardson D, Groy TL (1998) Acc Chem Res 31(8):474–484
Corma A, Garcia H, Xamena FXLI (2010) Chem Rev 110(8):4606–4655
Stock N, Biswas S (2012) Chem Rev 112(2):933–969
Cook TR, Zheng YR, Stang PJ (2013) Chem Rev 113(1):734–777
Degaga GD, Valenzano L (2016) Chem Phys Lett 660:313–319
Degaga GD, Valenzano L (2017) Chem Phys Lett 682:168–174
Batten SR, Champness NR, Chen X-M, Garcia-Martinez J, Kitagawa S, Ohrstrom L, O’Keeffe M, Suhh MP, Reedijki J (2012) Cryst Eng Commun 14(9):3001–3004
Fitzer E, Kochling KH, Boehm HP, Marsh H (1995) Pure Appl Chem 67(3):473–506
Horie K, Baron M, Fox RB, He J, Hess M, Kahovec J, Kitayama T, Kubisa P, Marechal E, Mormann W, Stepto RFT, Tabak D, Vohlidal J, Wilks ES, Work WJ, Allegra G, Baron M, Fradet A, Hatada K, He J, Hess M, Horie K, Jenkins AD, Jin JI, Jones RG, Kahovec J, Kitayama T, Kratochvil P, Kubisa P, Marcechal E, Meisel I, Metanomski WV, Moad G, Mormann W, Penczek S, Rebelo LP, Rinaudo M, Schopov I, Schubert M, Shibaev VP, Slomkowskj S, Stepto RFT, Tabak D, Vohlidal J, Wilks ES, Work WJ, Dorfner K, Frechet MJ, Harris WI, Hodge P, Nishikubo T, Ober CK, Reichmanis E, Sherrington DC, Tomoi M, Wohrle D (2004) Pure Appl Chem 76(4):889–906
Gangu KK, Maddila S, Mukkamala SB, Jonnalagadda SB (2016) Inorg Chim Acta 446:61–74
Dietzel PDC, Panella B, Hirscher M, Blom R, Fjellvag H (2006) Chem Commun 9:959–961
Dietzel PDC, Johnsen RE, Blom R, Fjellvag H (2008) Chem Eur J 14(8):2389–2397
Tranchemontagne DJ, Hunt JR, Yaghi OM (2008) Tetrahedron 64(36):8553–8557
Glover TG, Peterson GW, Schindler BJ, Britt D, Yaghi O (2011) Chem Eng Sci 66(2):163–170
Britt D, Furukawa H, Wang B, Glover TG, Yaghi OM (2009) Proc Natl Acad Sci USA 106(49):20637–20640
Britt D, Tranchemontagne D, Yaghi OM (2008) Proc Natl Acad Sci USA 105(33):11623–11627
Tan K, Zuluaga S, Wang H, Canepa P, Soliman K, Cure J, Li J, Thonhauser T, Chabal YJ (2017) Chem Mater 29(10):4227–4235
Tan K, Zuluaga S, Gong QH, Canepa P, Wang H, Li J, Chabal YJ, Thonhauser T (2014) Chem Mater 26(23):6886–6895
Nijem N, Canepa P, Kong LZ, Wu HH, Li J, Thonhauser T, Chabal YJ (2012) J Phys: Condens Matter 24(42):424203
Chavan S, Bonino F, Valenzano L, Civalleri B, Lamberti C, Acerbi N, Cavka JH, Leistner M, Bordiga S (2013) J Phys Chem C 117(30):15615–15622
Valenzano L, Vitillo JG, Chavan S, Civalleri B, Bonino F, Bordiga S, Lamberti C (2012) Catal Today 182(1):67–79
Chavan SM, Shearer GC, Bloch E, Bordiga S (2012) Chem Phys Chem 13(2):445–448
Chavan S, Bonino F, Vitillo JG, Groppo E, Lamberti C, Dietzel PDC, Zecchina A, Bordiga S (2009) Phys Chem Chem Phys 11(42):9811–9822
Valenzano L, Civalleri B, Sillar K, Sauer J (2011) J Phys Chem C 115(44):21777–21784
Valenzano L, Civalleri B, Chavan S, Palomino GT, Arean CO, Bordiga S (2010) J Phys Chem C 114(25):11185–11191
Kennedy AJ, Valenzano L (2012) Am Chem Soc Div Fuel Chem 57(1):913–916
Verma P, Xu XF, Truhlar DG (2013) J Phys Chem C 117(24):12648–12660
Borycz J, Paier J, Verma P, Darago LE, Xiao DJ, Truhlar DG, Long JR, Gagliardi L (2016) Inorg Chem 55(10):4924–4934
Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco P, Llunell M, Causà M, Noël Y (2014) CRYSTAL14 User’s Manual. University of Torino, Torino
Becke AD (1993) J Chem Phys 98(7):5648–5652
Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37(2):785–789. https://doi.org/10.1103/PhysRevB.37.785
Grimme S (2006) J Comput Chem 27(15):1787–1799
Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D’Arco P, Noel Y, Causa M, Rerat M, Kirtman B (2014) Int J Quantum Chem 114:1287
Pascale F, Zicovich-Wilson CM, Gejo FL, Civalleri B, Orlando R, Dovesi R (2004) J Comput Chem 25(6):888–897
Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P (2008) Cryst Eng Commun 10(11):1693–1693
London F (1937) Trans Faraday Soc 33:8b-26
Schuchardt KL, Didier BT, Elsethagen T, Sun LS, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47(3):1045–1052
Li B, Wen HM, Wang HL, Wu H, Tyagi M, Yildirim T, Zhou W, Chen BL (2014) J Am Chem Soc 136(17):6207–6210
Scott AP, Radom L (1996) J Phys Chem US 100(41):16502–16513
Pack HJMaJD (1976) Phys Rev B 13:5188
Boys SF, Bernardi F (2002) Mol Phys 100(1):65–73
Baranek P, Lichanot A, Orlando R, Dovesi R (2001) Chem Phys Lett 340(3–4):362–369
Baranek P, Zicovich-Wilson CM, Roetti C, Orlando R, Dovesi R (2001) Phys Rev B 64(12):125102
Zicovich-Wilson CM, Dovesi R, Saunders VR (2001) J Chem Phys 115(21):9708–9719
Zicovich-Wilson CM, Bert A, Roetti C, Dovesi R, Saunders VR (2002) J Chem Phys 116(3):1120–1127
Noel Y, Zicovich-Wilson CM, Civalleri B, D’Arco P, Dovesi R (2002) Phys Rev B 65(1):014111
Valenzano L (2018) (in preparation)
Kocman M, Jurecka P, Dubecky M, Otyepka M, Cho Y, Kim KS (2015) Phys Chem Chem Phys 17:6423–6432
Posligua V, Urbina AS, Rincon L, Soetens JC, Mendez MA, Zambrano CH, Torres FJ (2015) Comput Theor Chem 1073:75–83
Bullerwell J, Kenchenpur A, Whidden TK (2010) Fuel 89(1):254–256
Degaga GD, Valenzano L (2018). (in preparation)
Hirota E (1979) J Mol Spectrosc 77(2):213–221
Sverdlov LM, Kovner MA, Krainov EP (1974) Vibrational spectra of polyatomic molecules. Wiley, New York
Kuchitsu K (1998) Structure of free polyatomic molecules: basic data. Springer, Berlin
Herzberg G (1966) Electronic spectra of polyatomic molecules. Van Nostrand, New York
Wu TY (1939) Vibrational spectra and structure of polyatomic molecules. National University of Peking, Kun-Ming
Database RDJINCCCaB (2016). 101
Van Lerberghe D, Wright I, Duncan JL (1972) J Mol Spectrosc 42:251–273
Ugliengo P, Viterbo D, Chiari G (2010) Zeitschrift für Kristallographie-Cryst Mater 208(2):383
He YB, Krishna R, Chen BL (2012) Energy Environ Sci 5(10):9107–9120
Wu H, Zhou W, Yildirim T (2009) J Am Chem Soc 131(13):4995–5000
Lee K, Howe JD, Lin LC, Smit B, Neaton JB (2015) Chem Mater 27(3):668–678
Xiang S, Zhou W, Zhang Z, Green MA, Liu Y, Chen B (2010) Angew Chem Int Ed Engl 49(27):4615–4618
Bao Z, Alnemrat S, Yu L, Vasiliev I, Ren Q, Lu X, Deng S (2011) Langmuir 27(22):13554–13562
Geier SJ, Mason JA, Bloch ED, Queen WL, Hudson MR, Brown CM, Long JR (2013) Chem Sci 4(5):2054–2061
Acknowledgements
LV thanks Prof. Roberto Dovesi for the opportunity of contributing to this TCA issue in memory of Dr. Claudio Zicovich-Wilson. Claudio will be always remembered not only for his contribution to the scientific community but, and foremost, for his kindness, humbleness, sharpness, and sense of humor. The authors acknowledge the Department of Chemistry and Michigan Technological University for support, and startup allocation. Results reported in this work were obtained through the use of superior, a high-performance computing cluster at Michigan Technological University. The contents of this paper reflect the views and opinions of the authors, who are solely responsible for the accuracy of the data reported herein.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Additional information
Published as part of the special collection of articles “In Memoriam of Claudio Zicovich.”
Rights and permissions
About this article
Cite this article
Degaga, G.D., Valenzano, L. Quantum chemistry as a tool to assess energetic and spectroscopic properties of C1 and C2 hydrocarbons in MOF-74-Mg. Theor Chem Acc 137, 42 (2018). https://doi.org/10.1007/s00214-018-2227-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00214-018-2227-y
Keywords
- MOF
- PBC
- Light hydrocarbons
- Separation
- Heats of adsorption
- IR spectra
- Long-range forces
- DFT