Skip to main content

Quantum chemistry as a tool to assess energetic and spectroscopic properties of C1 and C2 hydrocarbons in MOF-74-Mg

Abstract

Periodic boundary conditions as implemented within a linear combination of atomic orbital approach are applied to determine the infrared spectra of methane, acetylene, ethylene, and ethane in MOF-74-Mg. Intensities and frequency shifts with respect to the molecules in the gas phase are described and discussed with respect to geometrical arrangements and structural modifications of the molecules adsorbed in the framework. Given the predictive nature of the work and in the attempt of providing a better ground for comparison with experimental spectroscopic observations, different molecular loadings are considered where one (low loading), three (medium loading), and six (full loading) molecules are adsorbed at the primary adsorption binding site identified by the MgO5 inorganic brick of the MOF structure. In addition, enthalpies of adsorption are reported for methane and acetylene whose addition to previous works by the same authors, provides an overall assessment at electronic structure level of the energetic behavior of C1–C4 hydrocarbons in MOF-74-Mg. Calculations are conducted at B3LYP-D2* level of theory as implemented in the Crystal14 program.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Kitagawa S, Kitaura R, Noro S (2004) Angew Chem Int Ed 43(18):2334–2375

    Article  CAS  Google Scholar 

  2. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Nature 423(6941):705–714

    Article  CAS  Google Scholar 

  3. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Chem Soc Rev 38(5):1450–1459

    Article  CAS  Google Scholar 

  4. Li J-R, Kupper RJ, Zhou H-C (2009) Chem Soc Rev 5(38):1477–1504

    Article  Google Scholar 

  5. Li JR, Sculley J, Zhou HC (2012) Chem Rev 112(2):869–932

    Article  CAS  Google Scholar 

  6. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) Science 341(6149):974

    Article  CAS  Google Scholar 

  7. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Ferey G, Morris RE, Serre C (2012) Chem Rev 112(2):1232–1268

    Article  CAS  Google Scholar 

  8. Czaja AU, Trukhan N, Muller U (2009) Chem Soc Rev 38(5):1284–1293

    Article  CAS  Google Scholar 

  9. Ferey G, Mellot-Draznieks C, Serre C, Millange F (2005) Acc Chem Res 38(4):217–225

    Article  CAS  Google Scholar 

  10. Ferey G (2008) Chem Soc Rev 37(1):191–214

    Article  CAS  Google Scholar 

  11. Yaghi OM, Li HL, Davis C, Richardson D, Groy TL (1998) Acc Chem Res 31(8):474–484

    Article  CAS  Google Scholar 

  12. Corma A, Garcia H, Xamena FXLI (2010) Chem Rev 110(8):4606–4655

    Article  CAS  Google Scholar 

  13. Stock N, Biswas S (2012) Chem Rev 112(2):933–969

    Article  CAS  Google Scholar 

  14. Cook TR, Zheng YR, Stang PJ (2013) Chem Rev 113(1):734–777

    Article  CAS  Google Scholar 

  15. Degaga GD, Valenzano L (2016) Chem Phys Lett 660:313–319

    Article  CAS  Google Scholar 

  16. Degaga GD, Valenzano L (2017) Chem Phys Lett 682:168–174

    Article  CAS  Google Scholar 

  17. Batten SR, Champness NR, Chen X-M, Garcia-Martinez J, Kitagawa S, Ohrstrom L, O’Keeffe M, Suhh MP, Reedijki J (2012) Cryst Eng Commun 14(9):3001–3004

    Article  CAS  Google Scholar 

  18. Fitzer E, Kochling KH, Boehm HP, Marsh H (1995) Pure Appl Chem 67(3):473–506

    Article  Google Scholar 

  19. Horie K, Baron M, Fox RB, He J, Hess M, Kahovec J, Kitayama T, Kubisa P, Marechal E, Mormann W, Stepto RFT, Tabak D, Vohlidal J, Wilks ES, Work WJ, Allegra G, Baron M, Fradet A, Hatada K, He J, Hess M, Horie K, Jenkins AD, Jin JI, Jones RG, Kahovec J, Kitayama T, Kratochvil P, Kubisa P, Marcechal E, Meisel I, Metanomski WV, Moad G, Mormann W, Penczek S, Rebelo LP, Rinaudo M, Schopov I, Schubert M, Shibaev VP, Slomkowskj S, Stepto RFT, Tabak D, Vohlidal J, Wilks ES, Work WJ, Dorfner K, Frechet MJ, Harris WI, Hodge P, Nishikubo T, Ober CK, Reichmanis E, Sherrington DC, Tomoi M, Wohrle D (2004) Pure Appl Chem 76(4):889–906

    Article  CAS  Google Scholar 

  20. Gangu KK, Maddila S, Mukkamala SB, Jonnalagadda SB (2016) Inorg Chim Acta 446:61–74

    Article  CAS  Google Scholar 

  21. Dietzel PDC, Panella B, Hirscher M, Blom R, Fjellvag H (2006) Chem Commun 9:959–961

    Article  Google Scholar 

  22. Dietzel PDC, Johnsen RE, Blom R, Fjellvag H (2008) Chem Eur J 14(8):2389–2397

    Article  CAS  Google Scholar 

  23. Tranchemontagne DJ, Hunt JR, Yaghi OM (2008) Tetrahedron 64(36):8553–8557

    Article  CAS  Google Scholar 

  24. Glover TG, Peterson GW, Schindler BJ, Britt D, Yaghi O (2011) Chem Eng Sci 66(2):163–170

    Article  Google Scholar 

  25. Britt D, Furukawa H, Wang B, Glover TG, Yaghi OM (2009) Proc Natl Acad Sci USA 106(49):20637–20640

    Article  CAS  Google Scholar 

  26. Britt D, Tranchemontagne D, Yaghi OM (2008) Proc Natl Acad Sci USA 105(33):11623–11627

    Article  CAS  Google Scholar 

  27. Tan K, Zuluaga S, Wang H, Canepa P, Soliman K, Cure J, Li J, Thonhauser T, Chabal YJ (2017) Chem Mater 29(10):4227–4235

    Article  CAS  Google Scholar 

  28. Tan K, Zuluaga S, Gong QH, Canepa P, Wang H, Li J, Chabal YJ, Thonhauser T (2014) Chem Mater 26(23):6886–6895

    Article  CAS  Google Scholar 

  29. Nijem N, Canepa P, Kong LZ, Wu HH, Li J, Thonhauser T, Chabal YJ (2012) J Phys: Condens Matter 24(42):424203

    Google Scholar 

  30. Chavan S, Bonino F, Valenzano L, Civalleri B, Lamberti C, Acerbi N, Cavka JH, Leistner M, Bordiga S (2013) J Phys Chem C 117(30):15615–15622

    Article  CAS  Google Scholar 

  31. Valenzano L, Vitillo JG, Chavan S, Civalleri B, Bonino F, Bordiga S, Lamberti C (2012) Catal Today 182(1):67–79

    Article  CAS  Google Scholar 

  32. Chavan SM, Shearer GC, Bloch E, Bordiga S (2012) Chem Phys Chem 13(2):445–448

    Article  CAS  Google Scholar 

  33. Chavan S, Bonino F, Vitillo JG, Groppo E, Lamberti C, Dietzel PDC, Zecchina A, Bordiga S (2009) Phys Chem Chem Phys 11(42):9811–9822

    Article  CAS  Google Scholar 

  34. Valenzano L, Civalleri B, Sillar K, Sauer J (2011) J Phys Chem C 115(44):21777–21784

    Article  CAS  Google Scholar 

  35. Valenzano L, Civalleri B, Chavan S, Palomino GT, Arean CO, Bordiga S (2010) J Phys Chem C 114(25):11185–11191

    Article  CAS  Google Scholar 

  36. Kennedy AJ, Valenzano L (2012) Am Chem Soc Div Fuel Chem 57(1):913–916

    CAS  Google Scholar 

  37. Verma P, Xu XF, Truhlar DG (2013) J Phys Chem C 117(24):12648–12660

    Article  CAS  Google Scholar 

  38. Borycz J, Paier J, Verma P, Darago LE, Xiao DJ, Truhlar DG, Long JR, Gagliardi L (2016) Inorg Chem 55(10):4924–4934

    Article  CAS  Google Scholar 

  39. Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco P, Llunell M, Causà M, Noël Y (2014) CRYSTAL14 User’s Manual. University of Torino, Torino

    Google Scholar 

  40. Becke AD (1993) J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  41. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37(2):785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  42. Grimme S (2006) J Comput Chem 27(15):1787–1799

    Article  CAS  Google Scholar 

  43. Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D’Arco P, Noel Y, Causa M, Rerat M, Kirtman B (2014) Int J Quantum Chem 114:1287

    Article  CAS  Google Scholar 

  44. Pascale F, Zicovich-Wilson CM, Gejo FL, Civalleri B, Orlando R, Dovesi R (2004) J Comput Chem 25(6):888–897

    Article  CAS  Google Scholar 

  45. Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P (2008) Cryst Eng Commun 10(11):1693–1693

    Article  CAS  Google Scholar 

  46. London F (1937) Trans Faraday Soc 33:8b-26

    Article  Google Scholar 

  47. Schuchardt KL, Didier BT, Elsethagen T, Sun LS, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47(3):1045–1052

    Article  CAS  Google Scholar 

  48. Li B, Wen HM, Wang HL, Wu H, Tyagi M, Yildirim T, Zhou W, Chen BL (2014) J Am Chem Soc 136(17):6207–6210

    Article  CAS  Google Scholar 

  49. Scott AP, Radom L (1996) J Phys Chem US 100(41):16502–16513

    Article  CAS  Google Scholar 

  50. Pack HJMaJD (1976) Phys Rev B 13:5188

  51. Boys SF, Bernardi F (2002) Mol Phys 100(1):65–73

    Article  Google Scholar 

  52. Baranek P, Lichanot A, Orlando R, Dovesi R (2001) Chem Phys Lett 340(3–4):362–369

    Article  CAS  Google Scholar 

  53. Baranek P, Zicovich-Wilson CM, Roetti C, Orlando R, Dovesi R (2001) Phys Rev B 64(12):125102

    Article  Google Scholar 

  54. Zicovich-Wilson CM, Dovesi R, Saunders VR (2001) J Chem Phys 115(21):9708–9719

    Article  CAS  Google Scholar 

  55. Zicovich-Wilson CM, Bert A, Roetti C, Dovesi R, Saunders VR (2002) J Chem Phys 116(3):1120–1127

    Article  CAS  Google Scholar 

  56. Noel Y, Zicovich-Wilson CM, Civalleri B, D’Arco P, Dovesi R (2002) Phys Rev B 65(1):014111

    Article  Google Scholar 

  57. Valenzano L (2018) (in preparation)

  58. Kocman M, Jurecka P, Dubecky M, Otyepka M, Cho Y, Kim KS (2015) Phys Chem Chem Phys 17:6423–6432

    Article  CAS  Google Scholar 

  59. Posligua V, Urbina AS, Rincon L, Soetens JC, Mendez MA, Zambrano CH, Torres FJ (2015) Comput Theor Chem 1073:75–83

    Article  CAS  Google Scholar 

  60. Bullerwell J, Kenchenpur A, Whidden TK (2010) Fuel 89(1):254–256

    Article  CAS  Google Scholar 

  61. Degaga GD, Valenzano L (2018). (in preparation)

  62. Hirota E (1979) J Mol Spectrosc 77(2):213–221

    Article  CAS  Google Scholar 

  63. Sverdlov LM, Kovner MA, Krainov EP (1974) Vibrational spectra of polyatomic molecules. Wiley, New York

    Google Scholar 

  64. Kuchitsu K (1998) Structure of free polyatomic molecules: basic data. Springer, Berlin

    Book  Google Scholar 

  65. Herzberg G (1966) Electronic spectra of polyatomic molecules. Van Nostrand, New York

    Google Scholar 

  66. Wu TY (1939) Vibrational spectra and structure of polyatomic molecules. National University of Peking, Kun-Ming

    Google Scholar 

  67. Database RDJINCCCaB (2016). 101

  68. Van Lerberghe D, Wright I, Duncan JL (1972) J Mol Spectrosc 42:251–273

    Article  Google Scholar 

  69. Ugliengo P, Viterbo D, Chiari G (2010) Zeitschrift für Kristallographie-Cryst Mater 208(2):383

    Google Scholar 

  70. He YB, Krishna R, Chen BL (2012) Energy Environ Sci 5(10):9107–9120

    Article  CAS  Google Scholar 

  71. Wu H, Zhou W, Yildirim T (2009) J Am Chem Soc 131(13):4995–5000

    Article  CAS  Google Scholar 

  72. Lee K, Howe JD, Lin LC, Smit B, Neaton JB (2015) Chem Mater 27(3):668–678

    Article  CAS  Google Scholar 

  73. Xiang S, Zhou W, Zhang Z, Green MA, Liu Y, Chen B (2010) Angew Chem Int Ed Engl 49(27):4615–4618

    Article  CAS  Google Scholar 

  74. Bao Z, Alnemrat S, Yu L, Vasiliev I, Ren Q, Lu X, Deng S (2011) Langmuir 27(22):13554–13562

    Article  CAS  Google Scholar 

  75. Geier SJ, Mason JA, Bloch ED, Queen WL, Hudson MR, Brown CM, Long JR (2013) Chem Sci 4(5):2054–2061

    Article  CAS  Google Scholar 

Download references

Acknowledgements

LV thanks Prof. Roberto Dovesi for the opportunity of contributing to this TCA issue in memory of Dr. Claudio Zicovich-Wilson. Claudio will be always remembered not only for his contribution to the scientific community but, and foremost, for his kindness, humbleness, sharpness, and sense of humor. The authors acknowledge the Department of Chemistry and Michigan Technological University for support, and startup allocation. Results reported in this work were obtained through the use of superior, a high-performance computing cluster at Michigan Technological University. The contents of this paper reflect the views and opinions of the authors, who are solely responsible for the accuracy of the data reported herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loredana Valenzano.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published as part of the special collection of articles “In Memoriam of Claudio Zicovich.”

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Degaga, G.D., Valenzano, L. Quantum chemistry as a tool to assess energetic and spectroscopic properties of C1 and C2 hydrocarbons in MOF-74-Mg. Theor Chem Acc 137, 42 (2018). https://doi.org/10.1007/s00214-018-2227-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2227-y

Keywords

  • MOF
  • PBC
  • Light hydrocarbons
  • Separation
  • Heats of adsorption
  • IR spectra
  • Long-range forces
  • DFT