Advertisement

Modeling magnetic circular dichroism within the polarizable embedding approach

  • Morten Steen Nørby
  • Sonia Coriani
  • Jacob Kongsted
Regular Article
Part of the following topical collections:
  1. Festschrift in honour of A. Rizzo

Abstract

Magnetic circular dichroism (MCD) is defined as the differential absorption of left and right circularly polarized light in a sample subjected to an external magnetic field. In order to interpret the results of MCD measurements, theoretical predictions of key MCD parameters can be of utmost importance. From an experimental point of view, MCD spectra of molecules are often measured in an environment and most notably in a solution. Thus, it may be very important that the method used to predict the MCD parameters is able to correctly account for medium effects. In this paper, we investigate the quality of MCD calculations within the polarizable embedding approach, which represents a fully atomistic and polarizable representation of an environment surrounding a smaller region treated using quantum mechanics. Furthermore, we compare the performance of the polarizable embedding scheme to the use of the more conventional dielectric continuum approach. Results are presented for cytosine and hypoxanthine solvated in water.

Keywords

Magnetic circular dichroism Polarizable embedding Solvation effects 

Notes

Acknowledgements

This paper is dedicated to Antonio Rizzo on the occasion of his 60 years birthday. We would all like to thank Antonio for his significant scientific contributions and for being an extremely kind person. Computational resources were provided by the DeIC National HPC Center at the University of Southern Denmark through an Abacus 2.0 grant. J. K. thanks the Danish Council for Independent Research and the Villum Foundation for financial support. S. C. acknowledges support from DTU Chemistry.

Supplementary material

214_2018_2220_MOESM1_ESM.pdf (149 kb)
Supplementary material 1 (pdf 149 KB)

References

  1. 1.
    Barron LD (2004) Molecular light scattering and optical activity. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Mason WR (2007) A practical guide to magnetic circular dichroism. Wiley, New YorkCrossRefGoogle Scholar
  3. 3.
    Caldwell DJ, Eyring H (1971) The theory of optical activity. Wiley-Interscience, New YorkGoogle Scholar
  4. 4.
    Buckingham A, Stephens P (1966) Annu Rev Phys Chem 17(1):399CrossRefGoogle Scholar
  5. 5.
    Schatz P, McCaffery A (1969) Quart Rev Chem Soc 23(4):552CrossRefGoogle Scholar
  6. 6.
    Serber R (1932) Phys Rev 41(4):489CrossRefGoogle Scholar
  7. 7.
    Stephens P (1968) Chem Phys Lett 2(4):241CrossRefGoogle Scholar
  8. 8.
    Stephens P (1970) J Chem Phys 52(7):3489CrossRefGoogle Scholar
  9. 9.
    Stephens P (1974) Annu Rev Phys Chem 25(1):201CrossRefGoogle Scholar
  10. 10.
    Stephens P (1976) Adv Chem Phys 35:197Google Scholar
  11. 11.
    Coriani S, Jørgensen P, Rizzo A, Ruud K, Olsen J (1999) Chem Phys Lett 300(1):61CrossRefGoogle Scholar
  12. 12.
    Coriani S, Hättig C, Jørgensen P, Helgaker T (2000) J Chem Phys 113(9):3561CrossRefGoogle Scholar
  13. 13.
    Kjærgaard T, Jansík B, Jørgensen P, Coriani S, Michl J (2007) J Phys Chem A 111(44):11278CrossRefGoogle Scholar
  14. 14.
    Seth M, Ziegler T, Banerjee A, Autschbach J, van Gisbergen SJ, Baerends EJ (2004) J Chem Phys 120(23):10942CrossRefGoogle Scholar
  15. 15.
    Seth M, Ziegler T, Autschbach J (2005) J Chem Phys 122(9):094112CrossRefGoogle Scholar
  16. 16.
    Seth M, Autschbach J, Ziegler T (2007) J Chem Theory Comput 3(2):434CrossRefGoogle Scholar
  17. 17.
    Seth M, Ziegler T (2010) Adv Inorg Chem 62:41CrossRefGoogle Scholar
  18. 18.
    Solheim H, Frediani L, Ruud K, Coriani S (2008) Theor Chim Acta 119(1):231CrossRefGoogle Scholar
  19. 19.
    Seth M, Krykunov M, Ziegler T, Autschbach J, Banerjee A (2008) J Chem Phys 128(14):144105CrossRefGoogle Scholar
  20. 20.
    Seth M, Krykunov M, Ziegler T, Autschbach J (2008) J Chem Phys 128(23):234102CrossRefGoogle Scholar
  21. 21.
    Kjærgaard T, Jørgensen P, Thorvaldsen AJ, Sałek P, Coriani S (2009) J Chem Theory Comput 5(8):1997CrossRefGoogle Scholar
  22. 22.
    Kjærgaard T, Kristensen K, Kauczor J, Jørgensen P, Coriani S, Thorvaldsen AJ (2011) J Chem Phys 135(2):024112CrossRefGoogle Scholar
  23. 23.
    Kjærgaard T, Coriani S, Ruud K (2012) Wiley Interdiscip Rev Comput Mol Sci 2(3):443CrossRefGoogle Scholar
  24. 24.
    Norman P, Bishop DM, Jørgen H, Jensen Aa, Oddershede J (2001) J Chem Phys 115(22):10323CrossRefGoogle Scholar
  25. 25.
    Norman P, Bishop DM, Jensen HJA, Oddershede J (2005) J Chem Phys 123(19):194103CrossRefGoogle Scholar
  26. 26.
    Solheim H, Ruud K, Coriani S, Norman P (2008) J Chem Phys 128:094103CrossRefGoogle Scholar
  27. 27.
    Solheim H, Ruud K, Coriani S, Norman P (2008) J Phys Chem A 112(40):9615CrossRefGoogle Scholar
  28. 28.
    Fahleson T, Kauczor J, Norman P, Coriani S (2013) Mol Phys 111(9–11):1401CrossRefGoogle Scholar
  29. 29.
    Fahleson T, Kauczor J, Norman P, Santoro F, Improta R, Coriani S (2015) J Phys Chem A 119(21):5476CrossRefGoogle Scholar
  30. 30.
    Krykunov M, Seth M, Ziegler T, Autschbach J (2007) J Chem Phys 127(24):244102CrossRefGoogle Scholar
  31. 31.
    Santoro F, Improta R, Fahleson T, Kauczor J, Norman P, Coriani S (2014) Phys Chem Lett 5(11):1806CrossRefGoogle Scholar
  32. 32.
    Martinez-Fernandez L, Fahleson T, Norman P, Santoro F, Coriani S, Improta R (2017) Photochem Photobiol Sci 16:1415–1423CrossRefGoogle Scholar
  33. 33.
    Isborn CM, Mar BD, Curchod BF, Tavernelli I, Martinez TJ (2013) J Phys Chem B 117(40):12189CrossRefGoogle Scholar
  34. 34.
    Milanese JM, Provorse MR, Alameda E Jr, Isborn CM (2017) J Chem Theory Comput 13(5):2159–2171CrossRefGoogle Scholar
  35. 35.
    Flaig D, Beer M, Ochsenfeld C (2012) J Chem Theory Comput 8(7):2260CrossRefGoogle Scholar
  36. 36.
    Nørby MS, Olsen JMH, Steinmann C, Kongsted J (2017) J Chem Theory Comput 13(9):4442–4451CrossRefGoogle Scholar
  37. 37.
    Warshel A, Levitt M (1976) J Mol Biol 103(2):227CrossRefGoogle Scholar
  38. 38.
    Olsen JM, Aidas K, Kongsted J (2010) J Chem Theory Comput 6(12):3721CrossRefGoogle Scholar
  39. 39.
    Olsen JMH, Kongsted J (2011) Adv Quantum Chem 61:107CrossRefGoogle Scholar
  40. 40.
    Pedersen MN, Hedegård ED, Olsen JMH, Kauczor J, Norman P, Kongsted J (2014) J Chem Theory Comput 10(3):1164CrossRefGoogle Scholar
  41. 41.
    Lipparini F, Cappelli C, Barone V (2013) J Chem Phys 138(23):234108CrossRefGoogle Scholar
  42. 42.
    Giovannini T, Olszowka M, Egidi F, Cheeseman JR, Scalmani G, Cappelli C (2017) J Chem Theory Comput 13(9):4421CrossRefGoogle Scholar
  43. 43.
    Day PN, Jensen JH, Gordon MS, Webb SP, Stevens WJ, Krauss M, Garmer D, Basch H, Cohen D (1996) J Chem Phys 105(5):1968CrossRefGoogle Scholar
  44. 44.
    Gordon MS, Freitag MA, Bandyopadhyay P, Jensen JH, Kairys V, Stevens WJ (2001) J Phys Chem A 105(2):293CrossRefGoogle Scholar
  45. 45.
    Soderhjelm P, Husberg C, Strambi A, Olivucci M, Ryde U (2009) J Chem Theory Comput 5(3):649CrossRefGoogle Scholar
  46. 46.
    Gordon MS, Smith QA, Xu P, Slipchenko LV (2013) Annu Rev Phys Chem 64:553CrossRefGoogle Scholar
  47. 47.
    Singh UC, Kollman PA (1986) J Comput Chem 7(6):718CrossRefGoogle Scholar
  48. 48.
    Thompson MA, Schenter GK (1995) J Phys Chem 99(17):6374CrossRefGoogle Scholar
  49. 49.
    Thompson MA (1996) J Phys Chem 100(34):14492CrossRefGoogle Scholar
  50. 50.
    Bakowies D, Thiel W (1996) J Phys Chem 100(25):10580CrossRefGoogle Scholar
  51. 51.
    Bryce RA, Buesnel R, Hillier IH, Burton NA (1997) Chem Phys Lett 279(5–6):367CrossRefGoogle Scholar
  52. 52.
    Jensen L, van Duijnen PT, Snijders JG (2003) J Chem Phys 118(2):514CrossRefGoogle Scholar
  53. 53.
    Kongsted J, Osted A, Mikkelsen KV, Christiansen O (2003) J Phys Chem A 107(14):2578CrossRefGoogle Scholar
  54. 54.
    Illingworth CJ, Gooding SR, Winn PJ, Jones GA, Ferenczy GG, Reynolds CA (2006) J Phys Chem A 110(20):6487CrossRefGoogle Scholar
  55. 55.
    Nielsen CB, Christiansen O, Mikkelsen KV, Kongsted J (2007) J Chem Phys 126(15):154112CrossRefGoogle Scholar
  56. 56.
    Geerke DP, Thiel S, Thiel W, van Gunsteren WF (2007) J Chem Theory Comput 3(4):1499CrossRefGoogle Scholar
  57. 57.
    Curutchet C, Muñoz-Losa A, Monti S, Kongsted J, Scholes GD, Mennucci B (2009) J Chem Theory Comput 5(7):1838CrossRefGoogle Scholar
  58. 58.
    Lipparini F, Barone V (2011) J Chem Theory Comput 7(11):3711CrossRefGoogle Scholar
  59. 59.
    Lipparini F, Cappelli C, Barone V (2012) J Chem Theory Comput 8(11):4153CrossRefGoogle Scholar
  60. 60.
    Boulanger E, Thiel W (2012) J Chem Theory Comput 8(11):4527CrossRefGoogle Scholar
  61. 61.
    Steinmann C, Olsen JMH, Kongsted J (2014) J Chem Theory Comput 10(3):981CrossRefGoogle Scholar
  62. 62.
    Schwabe T, Beerepoot MT, Olsen JMH, Kongsted J (2014) Phys Chem Chem Phys 17(4):2582CrossRefGoogle Scholar
  63. 63.
    Voelter W, Records R, Bunnenberg E, Djerassi C (1968) J Am Chem Soc 90(22):6163CrossRefGoogle Scholar
  64. 64.
    Sutherland JC, Holmquist B (1980) Annu Rev Biophys Bioeng 9(1):293CrossRefGoogle Scholar
  65. 65.
    Sutherland JC, Griffin K (1984) Biopolymers 23(12):2715CrossRefGoogle Scholar
  66. 66.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105(8):2999CrossRefGoogle Scholar
  67. 67.
    List NH, Jensen HJA, Kongsted J (2016) Phys Chem Chem Phys 18(15):10070CrossRefGoogle Scholar
  68. 68.
    Nåbo LJ, List NH, Steinmann C, Kongsted J (2017) J Chem Theory Comput 13(2):719CrossRefGoogle Scholar
  69. 69.
    Thellamurege NM, Li H (2012) J Chem Phys 137(24):246101CrossRefGoogle Scholar
  70. 70.
    Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2(5):799CrossRefGoogle Scholar
  71. 71.
    Stefanovich EV, Truong TN (1995) Chem Phys Lett 244(1):65CrossRefGoogle Scholar
  72. 72.
    Truong TN, Stefanovich EV (1995) Chem Phys Lett 240(4):253CrossRefGoogle Scholar
  73. 73.
    Barone V, Cossi M (1998) J Phys Chem A 102(11):1995CrossRefGoogle Scholar
  74. 74.
    Klamt A (1995) J Phys Chem 99(7):2224CrossRefGoogle Scholar
  75. 75.
    Kauczor J, Jørgensen P, Norman P (2011) J Chem Theory Comput 7(6):1610CrossRefGoogle Scholar
  76. 76.
    Kauczor J, Norman P (2014) J Chem Theory Comput 10(6):2449CrossRefGoogle Scholar
  77. 77.
    Olsen J, Jørgensen P (1985) J Chem Phys 82(7):3235CrossRefGoogle Scholar
  78. 78.
    Aidas K, Angeli C, Bak KL, Bakken V, Bast R, Boman L, Christiansen O, Cimiraglia R, Coriani S, Dahle P, Dalskov EK, Ekström U, Enevoldsen T, Eriksen JJ, Ettenhuber P, Fernández B, Ferrighi L, Fliegl H, Frediani L, Hald K, Halkier A, Hättig C, Heiberg H, Helgaker T, Hennum AC, Hettema H, Hjertenaes E, Høst S, Høyvik IM, Iozzi MF, Jansík B, Jensen HJA, Jonsson D, Jørgensen P, Kauczor J, Kirpekar S, Kjaergaard T, Klopper W, Knecht S, Kobayashi R, Koch H, Kongsted J, Krapp A, Kristensen K, Ligabue A, Lutnaes OB, Melo JI, Mikkelsen KV, Myhre RH, Neiss C, Nielsen CB, Norman P, Olsen J, Olsen JMH, Osted A, Packer MJ, Pawlowski F, Pedersen TB, Provasi PF, Reine S, Rinkevicius Z, Ruden TA, Ruud K, Rybkin VV, Sałek P, Samson CCM, de Merás AS, Saue T, Sauer SPA, Schimmelpfennig B, Sneskov K, Steindal AH, Sylvester-Hvid KO, Taylor PR, Teale AM, Tellgren EI, Tew DP, Thorvaldsen AJ, Thøgersen L, Vahtras O, Watson MA, Wilson DJD, Ziolkowski M, Ågren H (2013) Wiley Interdiscip Rev Comput Mol Sci 4(3):269CrossRefGoogle Scholar
  79. 79.
    Olsen JMH (2014) PElib: the Polarizable Embedding library (development version). https://gitlab.com/pe-software/pelib-public
  80. 80.
    Gao B (2014) Gen1Int version 0.3.0. http://repo.ctcc.no/projects/gen1int
  81. 81.
    Gao B, Thorvaldsen AJ, Ruud K (2010) Int J Quantum Chem 111(4):858CrossRefGoogle Scholar
  82. 82.
    Becke AD (1993) J Chem Phys 98(7):5648CrossRefGoogle Scholar
  83. 83.
    Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58(8):1200CrossRefGoogle Scholar
  84. 84.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37(2):785CrossRefGoogle Scholar
  85. 85.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas V, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09 revision D.01. Gaussian Inc., WallingfordGoogle Scholar
  86. 86.
    Case DA, Betz RM, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Luchko T, Luo R, Madej B, Mermelstein D, Merz KM, Monard G, Nguyen H, Nguyen HT, Omelyan I, Onufriev A, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, Kollman PA (2016) AMBER 2016, University of California, San FranciscoGoogle Scholar
  87. 87.
    Korth M (2010) J Chem Theory Comput 6(12):3808CrossRefGoogle Scholar
  88. 88.
    Jorgensen WL (1981) J Am Chem Soc 103(2):335CrossRefGoogle Scholar
  89. 89.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79(2):926CrossRefGoogle Scholar
  90. 90.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393(1):51CrossRefGoogle Scholar
  91. 91.
    Dunning TH (1989) J Chem Phys 90(2):1007CrossRefGoogle Scholar
  92. 92.
    Gagliardi L, Lindh R, Karlström G (2004) J Chem Phys 121(10):4494CrossRefGoogle Scholar
  93. 93.
    Vahtras O (2014) Loprop for dalton.  https://doi.org/10.5281/zenodo.13276 Google Scholar
  94. 94.
    Kaito A, Hatano M, Ueda T, Shibuya S (1980) Bull Chem Soc Jpn 53(11):3073CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Chemistry and PharmacyUniversity of Southern DenmarkOdense MDenmark
  2. 2.Department of ChemistryTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations