Advertisement

C → N coordination bonds in (CCC) → N +   (L) complexes

  • Neha Patel
  • Balu Falke
  • Prasad V. BharatamEmail author
Regular Article
Part of the following topical collections:
  1. First European Symposium on Chemical Bonding

Abstract

Quantum chemical calculations were performed on a series of novel divalent NI compounds, CCC → N+ ← CO (1), CCC → N+ ← N2 (2), CCC → N+ ← PPh3 (3), CCC → N+ ← C(NH2)2 (4), CCC → N+ ← NHCMe (5) CCC → N+ ← N-methyl-4-pyridylidene (6) and CCC → N+ ← Cyclopropenylidene (7), where CCC is a carbocyclic carbene (cyclohexa-2,5-diene-4-(diaminomethynyl)-1-ylidene). Complete optimization of 3D structures indicates that the chosen structures are the global minima on their respective potential energy surfaces (tautomeric alternatives are much less stable). The CCC → N+ coordination bond length is in the range of 1.353–1.399 Å, supporting the C → N coordination bond character. This is also supplemented by very low CCC → N bond rotational barriers (> 8 kcal/mol). The CCC → N ← L angles are in the range of 118°–131°, suggesting that there is no heteroallene-type character at the central nitrogen atom. Electron localization function, lone pair occupancy calculations and partial charge analysis indicate the presence of excess electron density at the N+ centre. The nucleophilicity of the designed compounds was further measured by calculating the proton affinity and complexation energies with various Lewis acids like BH3, AlCl3 and AuCl at the N+ centre. All these studies suggest the presence of divalent NI character in the designed compounds 17.

Keywords

Divalent NI compounds Donor–acceptor interactions Quantum chemical calculations N-heterocyclic carbenes Main group elements 

Notes

Acknowledgements

The authors thank Council of Scientific and Industrial Research, New Delhi, India, for Senior Research Fellowship and Department of Science and Technology (DST) Government of India, New Delhi, India, for the financial support.

References

  1. 1.
    Öfele K, Tosh E, Taubmann C, Herrmann WA (2009) Chem Rev 109(8):3408–3444CrossRefGoogle Scholar
  2. 2.
    Bharatam PV, Patel DS, Iqbal P (2005) J Med Chem 48(24):7615–7622CrossRefGoogle Scholar
  3. 3.
    Patel DS, Bharatam PV (2009) Chem Commun (9):1064–1066Google Scholar
  4. 4.
    Mehdi A, Adane L, Patel DS, Bharatam PV (2010) J Comput Chem 31(6):1259–1267Google Scholar
  5. 5.
    Patel DS, Bharatam PV (2011) J Phys Chem A 115(26):7645–7655CrossRefGoogle Scholar
  6. 6.
    Bhatia S, Bagul C, Kasetti Y, Patel DS, Bharatam PV (2012) J Phys Chem A 116(36):9071–9079CrossRefGoogle Scholar
  7. 7.
    Bhatia S, Malkhede YJ, Bharatam PV (2013) J Comput Chem 34(18):1577–1588CrossRefGoogle Scholar
  8. 8.
    Bhatia S, Bharatam PV (2014) J Org Chem 79(11):4852–4862CrossRefGoogle Scholar
  9. 9.
    Bharatam PV, Arfeen M, Patel N, Jain P, Bhatia S, Chakraborti AK, Khullar S, Gupta V, Mandal SK (2016) Chem Eur J 22:1088–1096CrossRefGoogle Scholar
  10. 10.
    Kathuria D, Arfeen M, Bankar AA, Bharatam PV (2016) J Chem Sci 128:1607–1614CrossRefGoogle Scholar
  11. 11.
    Frenking G, Tonner F (2014) The Chemical Bond—Chemical Bonding Across the Periodic Table. Wiley-VCH, WeinheimGoogle Scholar
  12. 12.
    Kinjo R, Donnadieu B, Celik MA, Frenking G, Bertrand G (2011) Science 333(6042):610–613CrossRefGoogle Scholar
  13. 13.
    Wang Y, Quillian B, Wei P, Wannere CS, Xie Y, King RB, Schaefer HF, Schleyer PVR, Robinson GH (2007) J Am Chem Soc 129(41):12412–12413CrossRefGoogle Scholar
  14. 14.
    Wang Y, Quillian B, Wei P, Xie Y, Wannere CS, King RB, Schaefer HF, Schleyer PVR, Robinson GH (2008) J Am Chem Soc 130(11):3298–3299CrossRefGoogle Scholar
  15. 15.
    Tonner R, Oxler F, Neumuller B, Petz W, Frenking G (2006) Angew Chem Int Ed 45(47):8038–8042CrossRefGoogle Scholar
  16. 16.
    Tonner R, Frenking G (2007) Angew Chem Int Ed 46(45):8695–8698CrossRefGoogle Scholar
  17. 17.
    Dyker CA, Lavallo V, Donnadieu B, Bertrand G (2008) Angew Chem Int Ed 47(17):3206–3209CrossRefGoogle Scholar
  18. 18.
    Kaufhold O, Hahn FE (2008) Angew Chem Int Ed 47(22):4057–4061CrossRefGoogle Scholar
  19. 19.
    Tonner R, Frenking G (2008) Chem Eur J 14(11):3273–3289CrossRefGoogle Scholar
  20. 20.
    Alcarazo M, Lehmann CW, Anoop A, Thiel W, Fürstner A (2009) Nat Chem 1(4):295–301CrossRefGoogle Scholar
  21. 21.
    Dyker CA, Bertrand G (2009) Nat Chem 1(4):265–266CrossRefGoogle Scholar
  22. 22.
    Tonner R, Frenking G (2009) Pure Appl Chem 81:597–614Google Scholar
  23. 23.
    Klein S, Tonner R, Frenking G (2010) Chem Eur J 16(33):10160–10170CrossRefGoogle Scholar
  24. 24.
    Esterhuysen C, Frenking G (2011) Chem Eur J 17(36):9944–9956CrossRefGoogle Scholar
  25. 25.
    Frenking G, Tonner R (2011) Wiley Interdiscip Rev: Comput Mol Sci 1(6):869–878Google Scholar
  26. 26.
    Barua SR, Allen WD, Kraka E, Jerabek P, Sure R, Frenking G (2013) Chem Eur J 19(47):15941–15954CrossRefGoogle Scholar
  27. 27.
    Mondal KC, Roesky HW, Schwarzer MC, Frenking G, Niepötter B, Wolf H, Herbst-Irmer R, Stalke D (2013) Angew Chem Int Ed 52(10):2963–2967CrossRefGoogle Scholar
  28. 28.
    Xiong Y, Yao S, Inoue S, Epping JD, Driess M (2013) Angew Chem Int Ed 52(28):7147–7150CrossRefGoogle Scholar
  29. 29.
    Wang Y, Xie Y, Wei P, King RB, Schaefer HF, Schleyer PVR, Robinson GH (2008) Science 321(5892):1069–1071CrossRefGoogle Scholar
  30. 30.
    Li Y, Mondal KC, Roesky HW, Zhu H, Stollberg P, Herbst-Irmer R, Stalke D, Andrada DM (2013) J Am Chem Soc 135(33):12422–12428CrossRefGoogle Scholar
  31. 31.
    Xiong Y, Yao S, Tan G, Inoue S, Driess M (2013) J Am Chem Soc 135(13):5004–5007CrossRefGoogle Scholar
  32. 32.
    Sidiropoulos A, Jones C, Stasch A, Klein S, Frenking G (2009) Angew Chem Int Ed 48(51):9701–9704CrossRefGoogle Scholar
  33. 33.
    Jones C, Sidiropoulos A, Holzmann N, Frenking G, Stasch A (2012) Chem Commun 48(79):9855–9857CrossRefGoogle Scholar
  34. 34.
    Bernhardi II, Drews T, Seppelt K (1999) Angew Chem Int Ed 38(15):2232–2233CrossRefGoogle Scholar
  35. 35.
    Kunetskiy RA, Císařová I, Šaman D, Lyapkalo IM (2009) Chem Eur J 15(37):9477–9485CrossRefGoogle Scholar
  36. 36.
    Ma T, Fu X, Kee CW, Zong L, Pan Y, Huang KW, Tan CH (2011) J Am Chem Soc 133(9):2828–2831CrossRefGoogle Scholar
  37. 37.
    Celik MA, Sure R, Klein S, Kinjo R, Bertrand G, Frenking G (2012) Chem Eur J 18(18):5676–5692CrossRefGoogle Scholar
  38. 38.
    Kozma Á, Gopakumar G, Farès C, Thiel W, Alcarazo M (2013) Chem Eur J 19(11):3542–3546CrossRefGoogle Scholar
  39. 39.
    Mirabdolbaghi R, Dudding T, Stamatatos T (2014) Org Lett 16(11):2790–2793CrossRefGoogle Scholar
  40. 40.
    Mirabdolbaghi R, Dudding T (2015) Org Lett 17(8):1930–1933CrossRefGoogle Scholar
  41. 41.
    Reinmuth M, Neuhäuser C, Walter P, Enders M, Kaifer E, Himmel H-J (2011) Eur J Inorg Chem 1:83–90CrossRefGoogle Scholar
  42. 42.
    Wilson DJ, Couchman SA, Dutton JL (2012) Inorg Chem 51(14):7657–7668CrossRefGoogle Scholar
  43. 43.
    Holzmann N, Dange D, Jones C, Frenking G (2013) Angew Chem Int Ed 52(10):3004–3008CrossRefGoogle Scholar
  44. 44.
    Schmidpeter A, Gebler W, Zwaschka F, Sheldrick WS (1980) Angew Chem Int Ed 19(9):722–723CrossRefGoogle Scholar
  45. 45.
    Cowley AH, Kemp RA (1985) Chem Rev 85(5):367–382CrossRefGoogle Scholar
  46. 46.
    Ellis BD, Dyker CA, Decken A, Macdonald CL (2005) Chem Commun (15):1965–1967Google Scholar
  47. 47.
    Wang Y, Xie Y, Wei P, King RB, Schaefer HF, Schleyer PVR, Robinson GH (2008) J Am Chem Soc 130(45):14970–14971CrossRefGoogle Scholar
  48. 48.
    Ellis BD, Macdonald CL (2004) Inorg Chem 43(19):5981–5986CrossRefGoogle Scholar
  49. 49.
    Abraham MY, Wang Y, Xie Y, Gilliard RJ Jr, Wei P, Vaccaro BJ, Johnson MK, Schaefer HF III, Schleyer PVR, Robinson GH (2013) J Am Chem Soc 135(7):2486–2488CrossRefGoogle Scholar
  50. 50.
    Abraham MY, Wang Y, Xie Y, Wei P, Schaefer HF, Schleyer PVR, Robinson GH (2010) Chem Eur J 16(2):432–435CrossRefGoogle Scholar
  51. 51.
    Vij A, Wilson WW, Vij V, Tham FS, Sheehy JA, Christe KO (2001) J Am Chem Soc 123(26):6308–6313CrossRefGoogle Scholar
  52. 52.
    Christe KO, Wilson WW, Sheehy JA, Boatz JA (1999) Angew Chem Int Ed 38(13/14):2004–2009CrossRefGoogle Scholar
  53. 53.
    Bruns H, Patil M, Carreras J, Vázquez A, Thiel W, Goddard R, Alcarazo M (2010) Angew Chem Int Ed 49(21):3680–3683CrossRefGoogle Scholar
  54. 54.
    Kunetskiy RA, Polyakova SM, Vavřík J, Císařová I, Saame J, Nerut ER, Koppel I, Koppel IA, Kütt A, Leito I (2012) Chem Eur J 18(12):3621–3630CrossRefGoogle Scholar
  55. 55.
    Yang Y, Moinodeen F, Chin W, Ma T, Jiang Z, Tan C-H (2012) Org Lett 14(18):4762–4765CrossRefGoogle Scholar
  56. 56.
    Zong L, Ban X, Kee CW, Tan C-H (2014) Angew Chem Int Ed 53(44):11849–11853CrossRefGoogle Scholar
  57. 57.
    Kee CW, Wong MW (2016) Aust J Chem 69(9):983–990CrossRefGoogle Scholar
  58. 58.
    Himmel D, Krossing I, Schnepf A (2014) Angew Chem Int Ed 53(24):6047–6048CrossRefGoogle Scholar
  59. 59.
    Himmel D, Krossing I, Schnepf A (2014) Angew Chem Int Ed 53(2):370–374CrossRefGoogle Scholar
  60. 60.
    Frenking G (2014) Angew Chem Int Ed 53(24):6040–6046CrossRefGoogle Scholar
  61. 61.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09: EM64L-G09 Rev B01. Gaussian Inc, Wallingford CTGoogle Scholar
  62. 62.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120(1):215–241CrossRefGoogle Scholar
  63. 63.
    Andersson MP, Uvdal P (2005) J Phys Chem A 109(12):2937–2941CrossRefGoogle Scholar
  64. 64.
    Tonner R, Frenking G (2008) Chem Eur J 14(11):3260–3272CrossRefGoogle Scholar
  65. 65.
    Weigend F, Ahlrichs R (2005) PCCP 7(18):3297–3305CrossRefGoogle Scholar
  66. 66.
    Chandra A, Goursot A (1996) J Phys Chem 100(28):11596–11599CrossRefGoogle Scholar
  67. 67.
    Dixon DA, Gole JL, Komornicki A (1988) J Phys Chem 92(8):2134–2136CrossRefGoogle Scholar
  68. 68.
    Curtiss LA, Pople JA (1988) J Phys Chem 92(4):894–899CrossRefGoogle Scholar
  69. 69.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88(6):899–926CrossRefGoogle Scholar
  70. 70.
    Domingo LR, Chamorro E, Pérez P (2008) J Org Chem 73(12):4615–4624CrossRefGoogle Scholar
  71. 71.
    Pratihar S, Roy S (2010) J Org Chem 75(15):4957–4963CrossRefGoogle Scholar
  72. 72.
    Lu T, Chen F (2012) J Comput Chem 33(5):580–592CrossRefGoogle Scholar
  73. 73.
    Wiberg KB (1968) Tetrahedron 24(3):1083–1096CrossRefGoogle Scholar
  74. 74.
    Schneider SK, Roembke P, Julius GR, Loschen C, Raubenheimer HG, Frenking G, Herrmann WA (2005) Eur J Inorg Chem 2005(15):2973–2977CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and ResearchS.A.S. NagarIndia

Personalised recommendations