Skip to main content
Log in

DFT/TDDFT, NPA, and AIM-based study of the molecular switching properties of photocyclization and metallochromism of the DAE complexes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Diarylethene (DAE), the ubiquitous photochromic unit, is one of the most promising candidates for well-recognized optoelectronic applications. In this paper, the relationship between reversible photoisomerization/metallochromic properties and second-order nonlinear optical (NLO) responses for a new photochromism based on DAE with a benzyl-linked 8-aminoquinoline-2-aminomethylpyridine unit (1O) has been systematically investigated by using density functional theory. Our results show that closed-ring (1C) comprising DAE unit was shown to be capable of exhibiting both large static first hyperpolarizabilities βtot (1.075 × 10−28 esu) and large switch ratio βratio ~ 31 with corresponding open-ring because of the better delocalization of the π-electron system, the more obvious degree of charge transfer and the smaller transition energy in the closed-ring. When the metal ions have been injected in open-ring (1O*M), we observed a larger NLO response compared with the corresponding open-ring 1O. However, it can slightly decrease the βtot values in 1C*M. Natural bonding orbital and atom in molecules analysis provide a better understanding for the property differences in metallochromic process. We hope this research would be beneficial for further theoretical and experimental studies on large second-order NLO switches applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shi Y, Zhang C, Zhang H, Bechtel JH, Dalton LR, Robinson BH, Steier WH (2000) Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape. Science 288(5463):119

    Article  CAS  Google Scholar 

  2. Lee M, Katz HE, Erben C, Gill DM, Gopalan P, Heber JD, McGee DJ (2002) Broadband modulation of light by using an electro-optic polymer. Science 298(5597):1401

    Article  CAS  Google Scholar 

  3. Chemla DS, Zyss J (1987) Nonlinear optical properties of organic molecules and crystals. Academic Press, New York

    Google Scholar 

  4. Dalton LR, Harper AW, Ghosn R, Steier WH, Ziari M, Fetterman H, Shi Y, Mustacich R, Jen AY, Shea KJ (1995) Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics. Chem Mater 17(6):1060

    Article  Google Scholar 

  5. Prasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers. Wiley, New York

    Google Scholar 

  6. Guan W, Liu CG, Song P, Yang GC, Su ZM (2009) Quantum chemical study of redox-switchable second-order optical nonlinearity in Keggin-type organoimido derivative [PW11O39 (ReNC6H5)]n(n = 2–4). Theor Chem Acc 122(5–6):265

    Article  CAS  Google Scholar 

  7. Asselberghs I, Hennrich G, Clays K (2006) Proton-triggered octopolar NLO chromophores. J Phys Chem A 110(19):6271

    Article  CAS  Google Scholar 

  8. Canary JW (2009) Redox-triggered chiroptical molecular switches. Chem Soc Rev 38(3):747

    Article  CAS  Google Scholar 

  9. Ma N-N, Sun S-L, Liu C-G, Sun XX, Qiu YQ (2011) Quantum chemical study of redox-switchable second-order nonlinear optical responses of D–π–A system bnbpy and metal Pt (II) chelate complex. J Phys Chem A 115(46):13564

    Article  CAS  Google Scholar 

  10. Wang W-Y, Ma N-N, Sun S-L, Qiu YQ (2014) Redox control of ferrocene-based complexes with systematically extended π-conjugated connectors: switchable and tailorable second order nonlinear optics. Phys Chem Chem Phys 16(10):4900

    Article  CAS  Google Scholar 

  11. Nitadori H, Ordronneau L, Boixel J, Jacquemin D, Boucekkine A, Singh A, Akita M, Ledoux I, Guerchais V, Le Bozec H (2012) Photoswitching of the second-order nonlinearity of a tetrahedral octupolar multi dte-based copper (I) complex. Chem Commun 48(84):10395

    Article  CAS  Google Scholar 

  12. Li Y, Li Q (2012) Photochemically reversible and thermally stable axially chiral diarylethene switches. Org Lett 14(17):4362

    Article  CAS  Google Scholar 

  13. Lv X-Y, Wang M-S, Yang C, Wang GE, Wang SH, Lin RG, Guo GC (2012) Photochromic metal complexes of n-methyl-4, 4′-bipyridinium: mechanism and influence of halogen atoms. Inorg Chem 51(7):4015

    Article  CAS  Google Scholar 

  14. Chen S, Chen L-J, Yang H-B, Tian H, Zhu W (2012) Light-triggered reversible supramolecular transformations of multi-bisthienylethene hexagons. J Am Chem Soc 134(33):13596

    Article  CAS  Google Scholar 

  15. Irie M, Lifka T, Kobatake S, Kato N (2000) Photochromism of 1, 2-bis (2-methyl-5-phenyl-3-thienyl) perfluorocyclopentene in a single-crystalline phase. J Am Chem Soc 122(20):4871

    Article  CAS  Google Scholar 

  16. Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev 114(24):12174

    Article  CAS  Google Scholar 

  17. Tian H, Yang S (2004) Recent progresses on diarylethene based photochromic switches. Chem Soc Rev 33(2):85

    Article  CAS  Google Scholar 

  18. Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100(5):1685

    Article  CAS  Google Scholar 

  19. Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T (2002) Organic chemistry: a digital fluorescent molecular photoswitch. Nature 420(6917):759

    Article  CAS  Google Scholar 

  20. Xia S, Liu G, Pu S (2015) A highly selective fluorescence sensor for Zn2+ and Cu2+ based on diarylethene with a piperazine-linked amidoquinoline unit. J Mater Chem C 3(16):4023

    Article  CAS  Google Scholar 

  21. Zhang C, Pu S, Sun Z, Fan C, Liu G (2015) Highly sensitive and selective fluorescent sensor for zinc ion based on a new diarylethene with a thiocarbamide unit. J Phys Chem B 119(13):4673

    Article  CAS  Google Scholar 

  22. Ding H, Liu G, Pu S, Zheng C (2014) Multi-addressable fluorescent switch based on a photochromic diarylethene with triazole-bridged methylquinoline group. Dyes Pigments 103:82

    Article  CAS  Google Scholar 

  23. Cui S, Liu G, Pu S, Chen B (2013) A highly selective fluorescent probe for Zn2+ based on a new photochromic diarylethene with a di-2-picolylamine unit. Dyes Pigments 99(3):950

    Article  CAS  Google Scholar 

  24. Fu Y, Fan C, Liu G, Cui S, Pu S (2016) A highly selective and sensitive ratiometric fluorescent chemosensor for Zn2+ based on diarylethene with a benzyl-linked 8-aminoquinoline-2-aminomethylpyridine unit. Dyes Pigments 126:121

    Article  CAS  Google Scholar 

  25. Sanguinet L, Pozzo J-L, Guillaume M, Champagne B, Castet F, Ducasse L, Maury E, Soulié J, Mançois F, Adamietz F (2006) Acidoswitchable nlo-phores: benzimidazolo [2, 3-b] oxazolidines. J Phys Chem B 110(22):10672

    Article  CAS  Google Scholar 

  26. Mançois F, Sanguinet L, Pozzo J-L, Guillaume M, Champagne B, Rodriguez V, Adamietz F, Ducasse L, Castet F (2007) Acido-triggered nonlinear optical switches: benzazolo-oxazolidines. J Phys Chem B 111(33):9795

    Article  Google Scholar 

  27. Plaquet A, Guillaume M, Champagne B, Castet F, Ducasse L, Pozzo JL, Rodriguez V (2008) In silico optimization of merocyanine-spiropyran compounds as second-order nonlinear optical molecular switches. Phys Chem Chem Phys 10(41):6223

    Article  CAS  Google Scholar 

  28. Mançois F, Pozzo JL, Pan J, Adamietz F, Rodriguez V, Ducasse L, Castet F, Plaquet A, Champagne B (2009) Two-way molecular switches with large nonlinear optical contrast. Chem Eur J 15(11):2560

    Article  Google Scholar 

  29. Champagne B, Al Plaquet, Pozzo J-L, Adamietz F, Rodriguez V, Ducasse L, Castet F, Plaquet A, Champagne B (2012) Nonlinear optical molecular switches as selective cation sensors. J Am Chem Soc 134(19):8101

    Article  CAS  Google Scholar 

  30. Bogdan E, Plaquet A, Antonov L, Rodriguez V, Ducasse L, Champagne B, Castet F (2010) Solvent effects on the second-order nonlinear optical responses in the keto–enol equilibrium of a 2-hydroxy-1-naphthaldehyde derivative. J Phys Chem C 114(29):12760–12768

    Article  CAS  Google Scholar 

  31. Plaquet A, Champagne B, Castet F, Ducasse L, Bogdan E, Rodriguez V, Pozzo JL (2009) Theoretical investigation of the dynamic first hyperpolarizability of DHA–VHF molecular switches. New J Chem 33(6):1349

    Article  CAS  Google Scholar 

  32. Boixel J, Guerchais V, Le Bozec H, Jacquemin D, Amar A, Boucekkine A, Colombo A, Dragonetti C, Marinotto D, Roberto D (2014) Second-order NLO switches from molecules to polymer films based on photochromic cyclometalated platinum (ii) complexes. J Am Chem Soc 136(14):5367

    Article  CAS  Google Scholar 

  33. Boixel J, Zhu Y, Le Bozec H, Benmensour MA, Boucekkine A, Wong KMC, Colombo A, Roberto D, Guerchais V, Jacquemin D (2016) Contrasted photochromic and luminescent properties in dinuclear Pt (ii) complexes linked through a central dithienylethene unit. Chem Commun 52(63):9833

    Article  CAS  Google Scholar 

  34. Boixel J, Guerchais V, Le Bozec H, Chantzis A, Jacquemin D, Colombo A, Dragonetti C, Marinotto D, Roberto D (2015) Sequential double second-order nonlinear optical switch by an acido-triggered photochromic cyclometallated platinum (ii) complex. Chem Commun 51(37):7805–7808

    Article  CAS  Google Scholar 

  35. Chen KJ, AlD Laurent, Jacquemin D (2014) Strategies for designing diarylethenes as efficient nonlinear optical switches. J Phys Chem C 118(8):4334

    Article  CAS  Google Scholar 

  36. Zhang M-Y, Wang C-H, Wang W-Y, Ma NN, Sun SL, Qiu YQ (2013) Strategy for enhancing second-order nonlinear optical properties of the Pt (ii) dithienylethene complexes: substituent effect, π-conjugated influence, and photoisomerization switch. J Phys Chem A 117(47):12497

    Article  CAS  Google Scholar 

  37. Tian D-M, Ma N-N, Wang W-Y, Wang J, Zhu CL, Qiu YQ (2014) Mechanistic insight into the second-order nonlinear optical properties of Ru-coordinated DTE complexes: photoisomerization, redox, and protonation switches. J Organomet Chem 772:100

    Article  Google Scholar 

  38. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648

    Article  CAS  Google Scholar 

  39. Lee C, Yang W, Parr RG (1988) Development of the colle–salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785

    Article  CAS  Google Scholar 

  40. Devlin F, Finley J, Stephens P, Frisch M (1995) Ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields—a comparison of local, nonlocal, and hybrid density functionals. J Phys Chem 99(46):16883

    Article  CAS  Google Scholar 

  41. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for k to au including the outermost core orbitals. J Phys Chem 82(1):299

    Article  CAS  Google Scholar 

  42. Fihey A, Perrier A, Maurel F (2012) Tuning the optical properties of dithienylethenes: theoretical insights. J Photochem Photobiol, A 247:30

    Article  CAS  Google Scholar 

  43. Pedone A (2013) Role of solvent on charge transfer in 7-aminocoumarin dyes: new hints from TD-CAM-B3LYP and state specific pcm calculations. J Chem Theory Comput 9(9):4087

    Article  CAS  Google Scholar 

  44. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10(44):6615

    Article  CAS  Google Scholar 

  45. Ye JT, Wang L, Wang HQ, Chen ZZ, Qiu QY, Xie HM (2017) Spirooxazine molecular switches with nonlinear optical responses as selective cation sensors. RSC Adv 7(2):642

    Article  CAS  Google Scholar 

  46. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109(19):8218

    Article  CAS  Google Scholar 

  47. Frisch M, Trucks G, Schlegel H, et al (2009) Gaussian 09, revision D. 01. Secondary Gaussian 09, revision d. 01

  48. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580

    Article  Google Scholar 

  49. Nishizawa S, Fihey A, Jacquemin D, Matsuda K (2016) Computational investigation on the switching efficiency of diarylethene: comparison between the first hyperpolarizability and exchange interaction. Chem Phys Lett 659:258

    Article  CAS  Google Scholar 

  50. Zhdanov GS (1965) Crystal physics. 500 P Academic Press Inc, 111 Fifth Avenue, New York, p 10003

    Google Scholar 

  51. de Almeida KJ, Ramalho TC, Neto JL, Santiago RT, Felicíssimo VC, Duarte HA (2013) Methane dehydrogenation by niobium ions: a first-principles study of the gas-phase catalytic reactions. Organometallics 32(4):989

    Article  Google Scholar 

  52. Shchavlev AE, Pankratov AN, Borodulin VB, Chaplygina OA (2005) DFT study of the monomers and dimers of 2-pyrrolidone: equilibrium structures, vibrational, orbital, topological, and NBO analysis of hydrogen-bonded interactions. J Phys Chem A 109(48):10982

    Article  CAS  Google Scholar 

  53. Montazerozohori M, Masoudiasl A, Doert T, Seykens H (2016) Structural and computational study of some new nano-structured Hg (II) compounds: a combined X-ray, hirshfeld surface and NBO analyses. RSC Adv 6(26):21396

    Article  CAS  Google Scholar 

  54. Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24(3):1083

    Article  CAS  Google Scholar 

  55. Niu Y, Zhao S, Chen G, Qu R, Zhou C, Wang L, Feng S (2016) Combined theoretical and experimental study on the adsorption mechanism of poly (4-vinylbenzyl 2-hydroxyethyl) sulfide, sulfoxide, and sulfone for Hg (II) and Pb (II). J Mol Liq 219:1065

    Article  CAS  Google Scholar 

  56. Gordy W, Thomas WO (1956) Electronegativities of the elements. J Chem Phys 24(2):439

    Article  CAS  Google Scholar 

  57. Fu-Qiang S, Jing-Yi A, Jia-Yong Y (2005) Theoretical study on measure of hydrogen bonding strength: R≡C≡N… pyrrole complexes. Chin J Chem 23(4):400

    Article  Google Scholar 

  58. Sadlej-Sosnowska N (2010) Transfer of electron density as a result of hydrogen bond formation—a case of charged complexes. Int J Quantum Chem 110(7):1354

    CAS  Google Scholar 

  59. Palusiak M, Krygowski TM (2007) Application of aim parameters at ring critical points for estimation of π-electron delocalization in six-membered aromatic and quasi-aromatic rings. Chem Eur J 13(28):7996

    Article  CAS  Google Scholar 

  60. Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H···F–Y systems. J Chem Phys 117(12):5529

    Article  CAS  Google Scholar 

  61. Becke A, Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley, New York

    Google Scholar 

  62. Varadwaj PR, Varadwaj A, Marques HM (2011) DFT-B3LYP, NPA-, and QTAIM-based study of the physical properties of [M (II) (H2O)2 (15-Crown-5)](M = Mn, Fe Co, Ni, Cu, Zn) complexes. J Phys Chem A 115(22):5592

    Article  CAS  Google Scholar 

  63. Macchi P, Sironi A (2003) Chemical bonding in transition metal carbonyl clusters: complementary analysis of theoretical and experimental electron densities. Coord Chem Rev 238:383–412

    Article  Google Scholar 

  64. Bultinck P (2007) Critical analysis of the local aromaticity concept in polyaromatic hydrocarbons. Faraday Discuss 135:347

    Article  CAS  Google Scholar 

  65. Poater J, Solà M, Duran M, Fradera X (2002) The calculation of electron localization and delocalization indices at the hartree–fock, density functional and post-hartree–fock levels of theory. Theor Chim Acta 107(6):362

    Article  CAS  Google Scholar 

  66. Wang W-Y, Wang L, Ma N-N, Zhu CL, Qiu YQ (2015) Ferrocene/fullerene hybrids showing large second-order nonlinear optical activities: impact of the cage unit size. Dalton Trans 44(21):10078

    Article  CAS  Google Scholar 

  67. Wang L, Wang W-Y, Qiu Y-Q, Lu HZ (2015) Second-order nonlinear optical response of electron donor–acceptor hybrids formed between corannulene and metallofullerenes. J Phys Chem C 119(44):24965

    Article  CAS  Google Scholar 

  68. Sasagane K, Aiga F, Itoh R (1993) Higher-order response theory based on the quasienergy derivatives: the derivation of the frequency-dependent polarizabilities and hyperpolarizabilities. J Chem Phys 99(5):3738

    Article  CAS  Google Scholar 

  69. Oudar JL (1977) Optical nonlinearities of conjugated molecules. stilbene derivatives and highly polar aromatic compounds. J Chem Phys 67(2):446

    Article  CAS  Google Scholar 

  70. Oudar JL, Chemla D (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66(6):2664

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the “12th Five-Year” Science and Technology Research Project of the Education Department of Jilin Province ([2016] 494) and the National Natural Science Foundation of China (No. 21173035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqing Qiu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2018_2204_MOESM1_ESM.doc

Supplementary material: The AIM Parameters of the ring-closed metal cation complexes 1C*M; The relationship of distances and the corresponding Wiberg indices, the tensorial components of first hyperpolarizabilities (10−30 esu), total first hyperpolarizabilities (10−30 esu) for 1O/1C and the metal cations complexes 1O*M and 1C*M; Molecular orbitals and absorption spectra of 1O*M/1C*M (M = Ni2+, Zn2+, Hg2+ and Pb2+) complexes. (DOC 6640 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Wang, L., Wang, H. et al. DFT/TDDFT, NPA, and AIM-based study of the molecular switching properties of photocyclization and metallochromism of the DAE complexes. Theor Chem Acc 137, 22 (2018). https://doi.org/10.1007/s00214-018-2204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2204-5

Keywords

Navigation