Skip to main content
Log in

Ab initio calculation of nonlinear optical properties for chiral carbon nanotubes. Second harmonic generation and dc-Pockels effect

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Although the static first hyperpolarizability \(\beta\) of graphene and chiral carbon nanotubes (CNTs) vanishes by symmetry, that is no longer true for frequency-dependent fields in which case there is a unique nonzero component. We evaluate that component for the dc-Pockels effect and second harmonic generation of several CNTs by means of the coupled perturbed Kohn–Sham method with the CAM-B3LYP functional as implemented in the CRYSTAL code. Both electronic and vibrational contributions are considered. Of particular interest is the frequency dependence in the region below the first resonance. Our results for the role of band gap, type of chirality, CNT radius and effect of orbital relaxation are analyzed using the conventional sum-over-states formulation in conjunction with the calculated band structure and density of states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Note that the z-axis generally used as the unique \(C_n\)-axis in \(D_n\) is replaced by x in this work, and the usual perpendicular pair (xy) by (yz).

References

  1. Zheng X, Feng M, Zhan HJ (2014) Enhanced nonlinear optical properties of nonzero-bandgap graphene materials in glass matrices. Mater Chem C 2:4121–4125

    Article  CAS  Google Scholar 

  2. Wang J, Hernandez Y, Lotya M, Coleman JN, Blau WJ (2009) Broadband nonlinear optical response of graphene dispersions. Adv Mater 21:2430–2435

    Article  CAS  Google Scholar 

  3. Wu R, Zhang Y, Yan S, Bian F, Wang W, Bai X, Lu X, Zhao J, Wang E (2011) Purely coherent nonlinear optical response in solution dispersions of graphene sheets. Nano Lett 11:5159

    Article  CAS  Google Scholar 

  4. Karamanis P, Otero N, Pouchan C (2014) Unleashing the quadratic nonlinear optical responses of graphene by confining white-graphene (h-BN) sections in its framework. J Am Chem Soc 136(20):7464–7473

    Article  CAS  Google Scholar 

  5. Avouris P (2010) Graphene: electronic and photonic properties and devices. Nano Lett 10:4285–4294

    Article  CAS  Google Scholar 

  6. Gu T, Petrone N, McMillan JF, van der Zande A, Yu M, Lo GQ, Kwong DL, Hone J, Wong CW (2012) Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat Photon 6:554–559

    Article  CAS  Google Scholar 

  7. Konishi A, Hirao Y, Matsumoto K, Kurata H, Kishi R, Shigeta Y, Nakano M, Togunaga K, Kamada K, Kubo TJ (2013) Synthesis and characterization of quarteranthene: elucidating the characteristics of the edge state of graphene nanoribbons at the molecular level. J Am Chem Soc 135:1430

    Article  CAS  Google Scholar 

  8. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photon 4:611

    Article  CAS  Google Scholar 

  9. Novoselov KS, Geim AK (2007) The rise of graphene. Nat Mater 6:183

    Article  Google Scholar 

  10. Boyd RW (1992) Nonlinear Optics, Academic Press, San Diego

    Google Scholar 

  11. Zyss J (1994) Molecular nonlinear optics: materials physics and devices. Academic Press, San Diego

    Google Scholar 

  12. Saleh BEA (1991) Fundamental of photonics. Wiley, New York

    Book  Google Scholar 

  13. Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. J Chem Rev 94:195

    Article  CAS  Google Scholar 

  14. Otero N, Pouchan C, Karamanis P (2017) Quadratic nonlinear optical (NLO) properties of borazino (B3N3)-doped nanographenes. J Mater Chem C 5(32):8273–8287

    Article  CAS  Google Scholar 

  15. Guo GY, Chu KC, Wang DS, Duan CG (2004) Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations. Phys Rev B 69:205416

    Article  Google Scholar 

  16. Lacivita V, Rérat M, Orlando R, Dovesi R, D’Arco P (2016) Longitudinal and transverse hyperpolarizabilities of carbon nanotubes: a computational investigation through the coupled-perturbed Hartree–Fock/Kohn–Sham scheme. Theor Chem Acc 135:81

    Article  Google Scholar 

  17. Dovesi R, Erba A, Orlando, Zicovich-Wilson CM, Civalleri B, Maschio L, Rérat M, Casassa S, Baima J, Salustro S, Kirtman B (2017a) Quantum-mechanical condensed matter simulations with crystal. Submitted to Wiley Interdisciplinary Reviews

  18. Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D’Arco P, Noël Y, Causà M, Rérat M, and Kirtman B (2014) Int J Quant Chem, 114: 1287. URL https://doi.org/10.1002/qua.24658

  19. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  21. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  22. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115:3540

    Article  CAS  Google Scholar 

  23. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  24. Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco P, Llunell M, Causà M, Noël Y, Maschio L, Erba A, Rérat M, Casassa S (2017b) CRYSTAL17 User’s Manual, University of Torino. URL http://www.crystal.unito.it

  25. Schlegel BH (1984) Estimating the hessian for gradient-type geometry optimizations. Theor Chim Acta 66:333–340. https://doi.org/10.1007/BF00554788

    Article  CAS  Google Scholar 

  26. Wittbrodt JM, Schlegel HB (1997) Estimating stretching force constants for geometry optimization. J Mol Struct THEOCHEM 398–399:55–61. https://doi.org/10.1016/S0166-1280(96)04928-7

    Article  Google Scholar 

  27. Broyden CG (1970a) The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA J Appl Math 6:76. https://doi.org/10.1093/imamat

    Article  Google Scholar 

  28. Broyden CG (1970b) The convergence of a class of double-rank minimization algorithms: 2. The new algorithm. IMA J Appl Math 6:222. https://doi.org/10.1093/imamat

    Article  Google Scholar 

  29. Goldfarb D (1970) A family of variable-metric methods derived by variational means. Math Comput 24:23–26. https://doi.org/10.1090/S0025-5718-1970-0258249-6

    Article  Google Scholar 

  30. Shanno DF (1970) A family of variable-metric methods derived by variational means. Math Comput 24:647–656. https://doi.org/10.1090/S0025-5718-1970-0274029-X

    Article  Google Scholar 

  31. Rérat M, Maschio L, Kirtman B, Civalleri B, Dovesi R (2016) Computation of second harmonic generation for crystalline urea and KDP. An ab initio approach through the coupled perturbed hartree fock/kohn sham scheme. J Chem Theor Comput 12:116

    Article  Google Scholar 

  32. Maschio L, Rérat M, Kirtman B, Dovesi R (2015) Calculation of the dynamic first hyperpolarizability \(\beta (-~\omega _\sigma; \omega _1,\omega _2)\) of periodic systems. implementation in the crystal code. J Chem Phys 143:244102

    Article  Google Scholar 

  33. Canepa P, Hanson RM, Ugliengo P, Alfredsson M (2011) J Appl Cryst 44:225

    Article  CAS  Google Scholar 

  34. Beata G, Perego G, and Civalleri B (2017) in preparation. URL www.crysplot.crystalsolutions.eu

  35. Movlarooy T, Kompany A, Hosseini SM, Shahtahmasebi N (2010) Optical absorption and electron energy loss spectra of single-walled carbon nanotubes. Comput Mater Sci 12:450

    Article  Google Scholar 

  36. Ferrari AM, Orlando R, Rérat M (2015) Ab initio calculation of the ultraviolet visible (uv-vis) absorption spectrum, electron-loss function, and reflectivity of solids. J Chem Theor Comput 11:3245

    Article  CAS  Google Scholar 

  37. Demichelis R, Noël Y, D’Arco P, Rérat M, Zicovich-Wilson CM, Dovesi R (2011) Properties of carbon nanotubes: an ab initio study using large gaussian basis sets and various dft functionals. J Phys Chem C 115:8876

    Article  CAS  Google Scholar 

  38. Kirtman B, Lacivita V, Dovesi R, Reis H (2011) Electric field polarization in conventional density functional theory: from quasilinear to two-dimensional and three-dimensional extended systems. J Chem Phys 135:154101

    Article  Google Scholar 

  39. Tsuneda T, Hirao K (2014) Long-range correction for density functional theory. WIREs Comput Mol Sci 4:375–390

    Article  CAS  Google Scholar 

  40. Bulik IW, Zalesny R, Bartkowiak W, Luis JM, Kirtman B, Scuseria GE, Avramopoulos A, Reis H, Papadopoulos MG (2013) Performance of density functional theory in computing nonresonant vibrational (hyper)polarizabilities. J Comput Chem 34:1775

    Article  CAS  Google Scholar 

  41. David Bishop M, De Kee DW (1996) The frequency dependence of nonlinear optical processes. J Chem Phys 104(24):9876–9887

    Article  Google Scholar 

  42. David Bishop M, De Kee DW (1996) The frequency dependence of hyperpolarizabilities for noncentrosymmetric molecules. J Chem Phys 105(18):8247–8249

    Article  Google Scholar 

  43. Bishop DM, Kirtman B (1991) A perturbation method for calculating vibrational dynamic dipole polarizabilities and hyperpolarizabilities. J Chem Phys 95:2646

    Article  CAS  Google Scholar 

  44. Kirtman B, Luis JM (2011) On the contribution of mixed terms in response function treatment of vibrational nonlinear optical properties. Int J Quantum Chem 111:839

    Article  CAS  Google Scholar 

  45. Maschio L, Kirtman B, Orlando R, Rérat M (2012) Ab Initio analytical infrared intensities for periodic systems through a coupled perturbed Hartree–Fock/Kohn–Sham method. J Chem Phys 137:204113

    Article  Google Scholar 

  46. Maschio L, Kirtman B, Rérat M, Orlando R, Dovesi R (2013) Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree–Fock/Kohn–Sham method in an atomic orbital basis. I. Theory. J Chem Phys 139:164101

    Article  Google Scholar 

  47. Zicovich-Wilson CM, Dovesi R (1998a) On the use of symmetry adapted crystalline orbitals in SCF–LCAO periodic calculations. I. The construction of the symmetrized orbitals. Int J Quantum Chem 67:299–310

    Article  CAS  Google Scholar 

  48. Zicovich-Wilson CM, Dovesi R (1998b) On the use of symmetry adapted crystalline orbitals in SCF–LCAO periodic calculations. II. Implementation of the self-consistent-field scheme and examples. Int J Quantum Chem 67:311–320

    Article  CAS  Google Scholar 

  49. Reich S, Thomsen C, Maultzsch J (2004) Carbon nanotubes. Basic concepts and physical properties. Wiley, Weinheim

    Google Scholar 

Download references

Acknowledgements

This work would not have been possible without the invaluable contribution given by our colleague and friend Claudio M. Zicovich-Wilson to the exploitation of symmetry in periodic systems, starting from his two seminal papers on symmetry-adapted crystalline orbitals [47, 48] to the use of symmetry for large crystalline solids, nanotubes, helices and fullerenes. Yet, his work was of great relevance to dramatically reduce the computational cost in the CRYSTAL code (i.e., one and two-electron integrals, SCF process, and many other properties).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Rérat.

Additional information

Published as part of the special collection of articles “In Memoriam of Claudio Zicovich”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 0 KB)

Appendix

Appendix

1.1 Electronic contribution to \(\beta\)

Equation 1 may be written as:

$$\begin{aligned} \beta _{xyz}(-~\omega _\sigma ;\omega _1,\omega _2)= & {} \sum _{n_\perp }\left( \sum _{n_\parallel } \langle 0\vert x\vert n_\parallel \rangle \langle n_\parallel \vert y\vert n_\perp \rangle \langle n_\perp \vert z\vert 0\rangle \left( \frac{1}{(\omega _{n_\parallel }-\omega _\sigma )(\omega _{n_\perp }-\omega _2)}-\frac{1}{(\omega _{n_\perp }+\omega _1)(\omega _{n_\parallel }+\omega _\sigma )}\right) \right. \nonumber \\&\quad + \left. \sum _{n_\parallel }\langle 0\vert x\vert n_\parallel \rangle \langle n_\parallel \vert z\vert n_\perp \rangle \langle n_\perp \vert y\vert 0\rangle \left( \frac{1}{(\omega _{n_\parallel }-\omega _\sigma )(\omega _{n_\perp }-\omega _1)}-\frac{1}{(\omega _{n_\perp }+\omega _2)(\omega _{n_\parallel }+\omega _\sigma )}\right) \right. \nonumber \\&\quad + \left. \sum _{n_\perp '}\langle 0\vert y\vert n_\perp \rangle \langle n_\perp \vert x\vert n_\perp '\rangle \langle n_\perp '\vert z\vert 0\rangle \left( \frac{1}{(\omega _{n_\perp }+\omega _1)(\omega _{n_\perp }'-\omega _2)}-\frac{1}{(\omega _{n_\perp }+\omega _2)(\omega _{n_\perp }'-\omega _1)}\right) \right) \end{aligned}$$
(10)

In deriving Eq. 10 we have utilized the symmetry relations:

$$\begin{aligned} \langle 0\vert x\vert n_\parallel \rangle \langle n_\parallel \vert y(z)\vert n_\perp \rangle \langle n_\perp \vert z(y)\vert 0\rangle = -~\langle 0\vert y(z)\vert n_\perp \rangle \langle n_\perp \vert z(y)\vert n_\parallel \rangle \langle n_\parallel \vert x\vert 0\rangle \end{aligned}$$
(11)

and

$$\begin{aligned} \langle 0\vert y(z)\vert n_\perp \rangle \langle n_\perp \vert x\vert n_\perp '\rangle \langle n_\perp '\vert z(y)\vert 0\rangle = -~\langle 0\vert z(y)\vert n_\perp \rangle \langle n_\perp \vert x\vert n_\perp '\rangle \langle n_\perp '\vert y(z)\vert 0\rangle \end{aligned}$$
(12)

where the wavefunctions are assumed to be real. The relations in Eqs. (4)–(5) are a consequence of the \(\theta =\pi /2\) screw \(T_q^w\)-axis rotation operation for the \(T_q^wD_n\) symmetry group of the \((n_1,n_2)\) chiral nanotube (see Ref. [49] for the definition of q and w in the \(2\pi w/q\) rotation angle). This operation corresponds to the transformation \(x\rightarrow x\pm 0.5a\) (a is the cell parameter), \(y\rightarrow \pm ~ z\), \(z\rightarrow \mp ~y\).

1.2 Vibrational contribution to \(\beta\)

Using Eq. 1 with vibronic states denoted by the \(\vert n,i_v\rangle\), where i refers to the vibrational mode and the subscript v to the vibrational level, we have:

$$\begin{aligned} \beta _{yxz}^{\mathrm{vib}}(-~\omega _\sigma;~\omega _1,~\omega _2)&= {} P_{(y/-\omega _\sigma ,x/\omega _1,z/\omega _2)} \sum \limits _{i=1}^{3N-6} \sum \limits _{n\ne 0,i_v} \left( \frac{\langle i_0,0\vert y\vert 0,i_1\rangle \langle i_1,0\vert x\vert n,i_v\rangle \langle i_v,n\vert z\vert 0,i_0\rangle }{(\omega _i-\omega _\sigma )(\omega _{n,i_v}-\omega _2)} \right. \nonumber \\&\quad \left. +\frac{\langle i_0,0\vert y\vert n,i_v\rangle \langle i_v,n\vert x\vert 0,i_1\rangle \langle i_1,0\vert z\vert 0,i_0\rangle }{(\omega _{n,i_v}-\omega _\sigma )(\omega _i-\omega _2)}\right) \nonumber \\&= {} P_{(y/-\omega _\sigma ,x/\omega _1,z/\omega _2)} \sum \limits _{i=1}^{3N-6}\left( \frac{\left\langle i_0\left| \frac{\partial \mu _{y}}{\partial Q_i}Q_i\right| i_1\right\rangle \left\langle i_1\left| \frac{1}{2}\frac{\partial \alpha _{xz}'(\omega _2)}{\partial Q_i}Q_i\right| i_0\right\rangle }{\omega _i-\omega _\sigma } \right. \nonumber \\&\quad +\left. \frac{\left\langle i_0\left| \frac{1}{2}\frac{\partial \alpha _{yx}'(-\omega _\sigma )}{\partial Q_i}Q_i\right| i_1\right\rangle \left\langle i_1\left| \frac{\partial \mu _z}{\partial Q_i} Q_i\right| i_0\right\rangle }{\omega _i-\omega _2} \right) \end{aligned}$$
(13)

here \(\omega _i\) and \(Q_i\) are, respectively, the phonon frequency and normal coordinate of the i-th vibrational mode at the \(\varGamma\)-point, and \(\mu _u\) is the dipole moment component along the Cartesian u direction. In addition, \(\alpha _{vw}'(\pm ~\omega )\) is a frequency-dependent electronic polarizability obtained by assuming that vibrational energy differences are small compared to electronic energy differences so that \(\omega _{n,i_v}\simeq \omega _{n,i_0}\simeq \omega _n\):

$$\begin{aligned} \alpha _{vw}'(\pm ~\omega )= & {} 2 \sum \limits _{n\ne 0}\frac{\langle 0\vert v\vert n\rangle \langle n\vert w\vert 0\rangle }{\omega _n\mp \omega } \simeq \sum \limits _{n\ne 0}\langle 0\vert v\vert n\rangle \langle n\vert w\vert 0\rangle \left( \frac{1}{\omega _n-\omega }+\frac{1}{\omega _n+\omega }\right) \nonumber \\= & {} \alpha _{vw}(\omega )\simeq \alpha _{vw}(0) \end{aligned}$$
(14)

This quantity is null at the equilibrium geometry for \(v\ne w\) (in the case of chiral CNTs), but not its derivative with respect to \(Q_i\). The approximation made in Eq. (14) is that we are operating in a non-resonant region where, for all excited electronic states, \(\omega _n\gg \omega\). This assumption is, however, not completely valid for the electronic transitions in the IR region that were considered for some of the largest tubes: for example, the gap of (14,10)CNT is smaller than 0.2 eV, which corresponds to the edge of the IR phonon spectrum (\(1600~\hbox {cm}^{-1}\)).

Permuting \(y/-~\omega _\sigma\) and \(z/\omega _2\) in the first term of the last line of Eq. (13), we obtain:

$$\begin{aligned} \beta _{yxz}^{\mathrm{vib}}(-~\omega _\sigma;~\omega _1,~\omega _2)&\simeq {} P_{(y/-~\omega _\sigma ,x/\omega _1,z/\omega _2)} \sum \limits _{i=1}^{3N-6}\left( \frac{\left\langle i_0\left| \frac{\partial \mu _{z}}{\partial Q_i}Q_i\right| i_1\right\rangle \left\langle i_1\left| \frac{1}{2}\frac{\partial \alpha _{xy}(-~\omega _\sigma )}{\partial Q_i}Q_i\right| i_0\right\rangle }{\omega _i+\omega _2} +\frac{\left\langle i_0\left| \frac{1}{2}\frac{\partial \alpha _{yx}(-~\omega _\sigma )}{\partial Q_i}Q_i\right| i_1\right\rangle \left\langle i_1\left| \frac{\partial \mu _z}{\partial Q_i} Q_i\right| i_0\right\rangle }{\omega _i-\omega _2}\right) \nonumber \\ & \simeq {} P_{(y/-~\omega _\sigma ,x/\omega _1,z/\omega _2)} \sum \limits _{i=1}^{3N-6}\left\langle i_0\left| \frac{1}{2}\frac{\partial \alpha _{yx}(-~\omega _\sigma )}{\partial Q_i}Q_i\right| i_1\right\rangle \left\langle i_1\left| \frac{\partial \mu _z}{\partial Q_i} Q_i\right| i_0\right\rangle \left( \frac{1}{\omega _i-\omega _2}+\frac{1}{\omega _i+\omega _2}\right) \nonumber \\\simeq & {} \frac{1}{2}P_{(y/-~\omega _\sigma ,x/\omega _1,z/\omega _2)} \sum \limits _{i=1}^{3N-6} \left( \frac{\partial \alpha _{yx}(-~\omega _\sigma )}{\partial Q_i}\right) \left( \frac{\partial \mu _z}{\partial Q_i}\right) \frac{1}{\omega _i^2-\omega ^2_2} \end{aligned}$$
(15)

where we have used the integral: \(\langle i_0\vert Q_i\vert i_1\rangle =\sqrt{1/2\omega _i}\).

The chiral nanotube symmetry [see discussion in connection with Eqs. (11) and (12)] leads to the following relation between numerators in the vibrational contribution:

$$\begin{aligned}&\left\langle i_0\left| \frac{1}{2}\frac{\partial \alpha _{zx}(-~\omega _\sigma )}{\partial Q_i}Q_i\right| i_1\right\rangle \left\langle i_1\left| \frac{\partial \mu _y}{\partial Q_i} Q_i\right| i_0\right\rangle \nonumber \\&\quad =-~\left\langle i_0\left| \frac{1}{2}\frac{\partial \alpha _{yx}(-~\omega _\sigma )}{\partial Q_i}Q_i\right| i_1\right\rangle \left\langle i_1\left| \frac{\partial \mu _z}{\partial Q_i} Q_i\right| i_0\right\rangle \end{aligned}$$
(16)

Due to symmetry \(\frac{\partial \mu _x}{\partial Q_i}\) and \(\frac{\partial \alpha _{yz}}{\partial Q_i}\) cannot simultaneously be nonzero, which leaves four remaining nonzero permutation terms that can be combined as:

$$\begin{aligned} \beta _{yxz}^{\mathrm{vib}}(-~\omega _\sigma;~\omega _1,~\omega _2) \simeq&\nonumber \\ \sum \limits _{i=1}^{3N-6} \left( \frac{\partial \alpha _{yx}}{\partial Q_i}\right) \left( \frac{\partial \mu _{z}}{\partial Q_i}\right) \left( \frac{1}{\omega _i^2-\omega _2^2}-\frac{1}{\omega _i^2-\omega _\sigma ^2}\right)&\end{aligned}$$
(17)

for frequencies in the non-resonant regime (\(\omega _\sigma,~\omega _1,~\omega _2\ll \omega _n\)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rérat, M., Karamanis, P., Civalleri, B. et al. Ab initio calculation of nonlinear optical properties for chiral carbon nanotubes. Second harmonic generation and dc-Pockels effect. Theor Chem Acc 137, 17 (2018). https://doi.org/10.1007/s00214-017-2187-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2187-7

Keywords

Navigation