Advertisement

Estimation of empirically fitted parameters for calculating pK a values of thiols in a fast and reliable way

  • Adriana Pérez-González
  • Romina Castañeda-Arriaga
  • Brisa Verastegui
  • Mirzam Carreón-González
  • Juan Raúl Alvarez-IdaboyEmail author
  • Annia GalanoEmail author
Regular Article
Part of the following topical collections:
  1. In Memoriam of Claudio Zicovich

Abstract

Two empirically fitted parameters (m and C 0) for the calculation of pK a values for thiols are provided for the first time, at 74 levels of theory. The coefficients were obtained by least-squares fits of the difference in Gibbs energy between each acid and its conjugated base versus experimental pK a values. The reliability of this fitted parameters approach (FPA) was confirmed using an independent test set of molecules. It was found that deviations from experiments are systematically lower than 0.5 pK a units, in terms of mean unsigned errors. In addition, all the tested levels of theory produced maximum absolute errors lower than 1 pK a unit. The parameters estimated here are expected to facilitate pK a calculations, using electronic structure-based strategies, with uncertainties close to the experimental ones. Albeit the present study deals only with molecules of modest complexity, i.e., the reliability of the FPA for more complex systems remains to be tested, it seems to be a promising approach for obtaining pK a values of thiols in a fast and reliable way.

Keywords

Acid constant Deprotonation Density functional theory Acid–base equilibria 

Notes

Acknowledgements

We gratefully acknowledge the Laboratorio de Visualización y Cómputo Paralelo at Universidad Autónoma Metropolitana-Iztapalapa and the Dirección General de Servicios de Cómputo Académico (DGTIC) at Universidad Nacional Autónoma de México. Adriana Pérez-González acknowledges the economic support of the Program of Cátedras - CONACYT from CONACyT - UAMI (2015–2025). Romina Castañeda-Arriaga acknowledges the economic support of the program of Estancias Posdoctorales Nacionales from CONACYT.

Supplementary material

214_2017_2179_MOESM1_ESM.pdf (127 kb)
Supplementary material 1 (PDF 126 kb)

References

  1. 1.
    Pliego JR Jr, Riveros JM (2002) Theoretical calculation of pK a using the cluster-continuum model. J Phys Chem A 106:7434–7439CrossRefGoogle Scholar
  2. 2.
    Schüürmann G, Cossi M, Barone V et al (1998) Prediction of the pK a of carboxylic acids using the ab initio continuum-solvation model PCM-UAHF. J Phys Chem A 102:6706–6712CrossRefGoogle Scholar
  3. 3.
    da Silva CO, da Silva EC, Nascimento MAC (1999) Ab initio calculations of absolute pK a values in aqueous solution I. Carboxylic acids. J Phys Chem A 103:11194–11199CrossRefGoogle Scholar
  4. 4.
    Toth AM, Liptak MD, Phillips DL et al (2001) Accurate relative pK a calculations for carboxylic acids using complete basis set and Gaussian-n models combined with continuum solvation methods. J Chem Phys 114:4595–4606CrossRefGoogle Scholar
  5. 5.
    Liptak MD, Shields GC (2001) Accurate pK a calculations for carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. J Am Chem Soc 123:7314–7319CrossRefGoogle Scholar
  6. 6.
    Liptak MD, Gross KC, Seybold PG et al (2002) Absolute pK a determinations for substituted phenols. J Am Chem Soc 124:6421–6427CrossRefGoogle Scholar
  7. 7.
    Chipman DM (2002) Computation of pK a from dielectric continuum theory. J Phys Chem A 106:7413–7422CrossRefGoogle Scholar
  8. 8.
    Adam KR (2002) New density functional and atoms in molecules method of computing relative pK a values in solution. J Phys Chem A 106:11963–11972CrossRefGoogle Scholar
  9. 9.
    Saracino GAA, Improta R, Barone V (2003) Absolute pK a determination for carboxylic acids using density functional theory and the polarizable continuum model. Chem Phys Lett 373:411–415CrossRefGoogle Scholar
  10. 10.
    Klamt A, Eckert F, Diedenhofen M et al (2003) First principles calculations of aqueous pK a values for organic and inorganic acids using COSMO − RS reveal an inconsistency in the slope of the pK a scale. J Phys Chem A 107:9380–9386CrossRefGoogle Scholar
  11. 11.
    Almerindo GI, Tondo DW, Pliego JR (2004) Ionization of organic acids in dimethyl sulfoxide solution: a theoretical ab initio calculation of the pK a using a new parametrization of the polarizable continuum model. J Phys Chem A 108:166–171CrossRefGoogle Scholar
  12. 12.
    Magill AM, Cavell KJ, Yates BF (2004) Basicity of nucleophilic carbenes in aqueous and nonaqueous solvents theoretical predictions. J Am Chem Soc 126:8717–8724CrossRefGoogle Scholar
  13. 13.
    Vianello R, Maksić ZB (2005) Strong acidity of some polycyclic aromatic compounds annulated to a cyclopentadiene moiety and their cyano derivatives—a density functional B3LYP study. Eur J Org Chem 2005(16):3571–3580CrossRefGoogle Scholar
  14. 14.
    Namazian M, Zakery M, Noorbala MR et al (2008) Accurate calculation of the pK a of trifluoroacetic acid using high-level ab initio calculations. Chem Phys Lett 451:163–168CrossRefGoogle Scholar
  15. 15.
    Ho J, Coote ML (2009) pK a calculation of some biologically important carbon acids—an assessment of contemporary theoretical procedures. J Chem Theory Comput 5:295–306CrossRefGoogle Scholar
  16. 16.
    Song Y, Mao J, Gunner MR (2009) MCCE2: improving protein pK a calculations with extensive side chain rotamer sampling. J Comput Chem 30:2231–2247Google Scholar
  17. 17.
    Delgado EJ (2009) DFT calculation of pK a’s for dimethoxypyrimidinylsalicylic based herbicides. Chem Phys Lett 471:133–135CrossRefGoogle Scholar
  18. 18.
    Casasnovas R, Frau J, Ortega-Castro J et al (2009) Absolute and relative pK a calculations of mono and diprotic pyridines by quantum methods. J Mol Struct THEOCHEM 912:5–12CrossRefGoogle Scholar
  19. 19.
    Dissanayake DP, Senthilnithy R (2009) Thermodynamic cycle for the calculation of ab initio pK a values for hydroxamic acids. J Mol Struct THEOCHEM 910:93–98CrossRefGoogle Scholar
  20. 20.
    Uudsemaa M, Kanger T, Lopp M et al (2010) pK a calculation for monoprotonated bipiperidine, bimorpholine and their derivatives in H2O and MeCN. Chem Phys Lett 485:83–86CrossRefGoogle Scholar
  21. 21.
    Rayne S, Forest K (2010) Theoretical studies on the pK a values of perfluoroalkyl carboxylic acids. J Mol Struct THEOCHEM 949:60–69CrossRefGoogle Scholar
  22. 22.
    Rebollar-Zepeda AM, Campos-Hernández T, Ramírez-Silva MT et al (2011) Searching for computational strategies to accurately predict pK as of large phenolic derivatives. J Chem Theor Comput 7:2528–2538CrossRefGoogle Scholar
  23. 23.
    Rebollar-Zepeda AM, Galano A (2012) First principles calculations of pK a values of amines in aqueous solution: application to neurotransmitters. Int J Quantum Chem 112:3449–3460CrossRefGoogle Scholar
  24. 24.
    Rebollar-Zepeda AM, Galano A (2016) Quantum mechanical based approaches for predicting pK a values of carboxylic acids: evaluating the performance of different strategies. RSC Adv 6:112057–112064CrossRefGoogle Scholar
  25. 25.
    Galano A, Pérez-González A, Castañeda-Arriaga R et al (2016) Empirically fitted parameters for calculating pK a values with small deviations from experiments using a simple computational strategy. J Chem Inf Model 56:1714–1724CrossRefGoogle Scholar
  26. 26.
    Ho J, Coote ML (2009) A universal approach for continuum solvent pK a calculations: are we there yet? Theor Chem Acc 125:3–21CrossRefGoogle Scholar
  27. 27.
    Murphy MP (2012) Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 16:476–495CrossRefGoogle Scholar
  28. 28.
    Ghibu S, Richard C, Vergely C et al (2009) Antioxidant properties of an endogenous thiol: alpha-lipoic acid, useful in the prevention of cardiovascular diseases. J Cardiovasc Pharmacol 54:391–398CrossRefGoogle Scholar
  29. 29.
    Short JD, Downs K, Tavakoli S et al (2016) Protein thiol redox signaling in monocytes and macrophages. Antioxid Redox Signal 25:816–835CrossRefGoogle Scholar
  30. 30.
    Yang J, Carroll KS, Liebler DC (2016) The expanding landscape of the thiol redox proteome. Mol Cell Proteomics 15:1–11CrossRefGoogle Scholar
  31. 31.
    Reddy P, Jang SY, Segalman RA et al (2007) Thermoelectricity in molecular junctions. Science 315:1568–1571CrossRefGoogle Scholar
  32. 32.
    Tan SF, Wu L, Yang JKW et al (2014) Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343:1496–1499CrossRefGoogle Scholar
  33. 33.
    Ivanova LV, Cibich D, Deye G et al (2017) Modeling of S-nitrosothiol–thiol reactions of biological significance: HNO production by S-thiolation requires a proton shuttle and stabilization of polar intermediates. ChemBioChem 18:726–738CrossRefGoogle Scholar
  34. 34.
    Ding S, Ghosh P, Lunsford AM et al (2016) Hemilabile bridging thiolates as proton shuttles in bioinspired H2 production electrocatalysts. J Am Chem Soc 138:12920–12927CrossRefGoogle Scholar
  35. 35.
    Bandyopadhyay S, Chattopadhyay S, Dey A (2015) The protonation state of thiols in self-assembled monolayers on roughened Ag/Au surfaces and nanoparticles. Phys Chem Chem Phys 17:24866–24873CrossRefGoogle Scholar
  36. 36.
    Jao SC, Ospina SME, Berdis AJ et al (2006) Computational and mutational analysis of human glutaredoxin (thioltransferase): probing the molecular basis of the low pK a of cysteine 22 and its role in catalysis. Biochemistry 45:4785–4796CrossRefGoogle Scholar
  37. 37.
    Gough JD, Lees WJ (2005) Effects of redox buffer properties on the folding of a disulfide-containing protein: dependence upon pH, thiol pK a, and thiol concentration. J Biotechnol 115:279–290CrossRefGoogle Scholar
  38. 38.
    Castañeda-Arriaga R, Galano A (2017) Exploring chemical routes relevant to the toxicity of paracetamol and its meta-analogue at a molecular level. Chem Res Toxicol 30:1286–1301CrossRefGoogle Scholar
  39. 39.
    Yosca TH, Rittle J, Krest CM et al (2013) Iron(IV)hydroxide pK a and the role of thiolate ligation in C–H bond activation by cytochrome P450. Science 342:825–829CrossRefGoogle Scholar
  40. 40.
    Wu J, Huang R, Wang C et al (2013) Thiol-inducible direct fluorescence monitoring of drug release. Org Biomol Chem 11:580–585CrossRefGoogle Scholar
  41. 41.
    Andres T, Eckmann L, Smith DK (2013) Voltammetry of nitrobenzene with cysteine and other acids in DMSO. Implications for the biological reactivity of reduced nitroaromatics with thiols. Electrochim Acta 92:257–268CrossRefGoogle Scholar
  42. 42.
    Zhang ZY, Dixon JE (1993) Active site labeling of the yersinia protein tyrosine phosphatase: the determination of the pK a of the active site cysteine and the function of the conserved histidine 402. Biochemistry 32:9340–9345CrossRefGoogle Scholar
  43. 43.
    Madzelan P, Labunska T, Wilson MA (2012) Influence of peptide dipoles and hydrogen bonds on reactive cysteine pK a values in fission yeast DJ-1. FEBS J 279:4111–4120CrossRefGoogle Scholar
  44. 44.
    Jensen KS, Pedersen JT, Winther JR et al (2014) The pK a value and accessibility of cysteine residues are key determinants for protein substrate discrimination by glutaredoxin. Biochemistry 53:2533–2540CrossRefGoogle Scholar
  45. 45.
    Thapa B, Schlegel HB (2016) Density functional theory calculation of pK a’s of thiols in aqueous solution using explicit water molecules and the polarizable continuum model. J Phys Chem A 120:5726–5735CrossRefGoogle Scholar
  46. 46.
    Zhang S, Baker J, Pulay P (2010) A reliable and efficient first principles-based method for predicting pK a values. 2. Organic acids. J Phys Chem A 114:432–442CrossRefGoogle Scholar
  47. 47.
    Klicić JJ, Friesner RA, Liu S-Y et al (2002) Accurate prediction of acidity constants in aqueous solution via density functional theory and self-consistent reaction field methods. J Phys Chem A 106:1327–1335CrossRefGoogle Scholar
  48. 48.
    Ugur I, Marion A, Parant S et al (2014) Rationalization of the pK a values of alcohols and thiols using atomic charge descriptors and its application to the prediction of amino acid pK a’s. J Chem Inf Model 54:2200–2213CrossRefGoogle Scholar
  49. 49.
    Roos G, Loverix S, Geerlings P (2006) Origin of the pK a perturbation of N-terminal cysteine in alpha- and 3(10)-helices: a computational DFT study. J Phys Chem B 110:557–562CrossRefGoogle Scholar
  50. 50.
    Perdew JP, Ruzsinszky A, Tao J et al (2005) Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. J Chem Phys 123:62201CrossRefGoogle Scholar
  51. 51.
    Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09. Gaussian Inc, WallingfordGoogle Scholar
  52. 52.
    Cramer CJ, Truhlar DG (2008) A universal approach to solvation modeling. Acc Chem Res 41:760–768CrossRefGoogle Scholar
  53. 53.
    Ho J, Klamt A, Coote ML (2010) Comment on the correct use of continuum solvent models. J Phys Chem A 114:13442–13444CrossRefGoogle Scholar
  54. 54.
    Ribeiro RF, Marenich AV, Cramer CJ et al (2011) Use of solution-phase vibrational frequencies in continuum models for the free energy of solvation. J Phys Chem B 115:14556–14562CrossRefGoogle Scholar
  55. 55.
    Smith RM, Martell AE, Motekaitis RJ (2004) NIST Standard Reference Database 46. NIST Standard Reference Database 46, 8.0 edn. National Institute of Standards and Technology (NIST), Texas A&M UniversityGoogle Scholar
  56. 56.
    Kreevoy MM, Harper ET, Duvall RE et al (1960) Inductive effects on the acid dissociation constants of mercaptans. J Am Chem Soc 82:4899–4902CrossRefGoogle Scholar
  57. 57.
    Meier J, Schwarzenbach G (1957) Eine mit Glaselektroden ausgerüstete Strömungsapparatur (Über die Aciditätskonstante der wahren Kohlensäure und deren Dehydratationsgeschwindigkeit). Helv Chim Acta 40:907–917CrossRefGoogle Scholar
  58. 58.
    Danehy JP, Noel CJ (1960) The relative nucleophilic character of several mercaptans toward ethylene oxide. J Am Chem Soc 82:2511–2515CrossRefGoogle Scholar
  59. 59.
    Zhang S, Baker J, Pulay P (2010) A reliable and efficient first principles-based method for predicting pK a Values. 1. Methodology. J Phys Chem A 114:425–431CrossRefGoogle Scholar
  60. 60.
    Eckert F, Klamt A (2006) Accurate prediction of basicity in aqueous solution with COSMO-RS. J Comput Chem 27:11–19CrossRefGoogle Scholar
  61. 61.
    Matsui T, Baba T, Kamiya K et al (2012) An accurate density functional theory based estimation of pK a values of polar residues combined with experimental data: from amino acids to minimal proteins. Phys Chem Chem Phys 14:4181–4187CrossRefGoogle Scholar
  62. 62.
    Álvarez-Diduk R, Ramírez-Silva MT, Galano A et al (2013) Deprotonation mechanism and acidity constants in aqueous solution of flavonols: a combined experimental and theoretical study. J Phys Chem B 117:12347–12359CrossRefGoogle Scholar
  63. 63.
    Szakacs Z, Noszal B (1999) Protonation microequilibrium treatment of polybasic compounds with any possible symmetry. J Math Chem 26:139–155CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.CONACYT - Departamento de Química, División de Ciencias Básicas e IngenieríaUniversidad Autónoma Metropolitana-IztapalapaMexicoMexico
  2. 2.Departamento de Química, División de Ciencias Básicas e IngenieríaUniversidad Autónoma Metropolitana-IztapalapaMexicoMexico
  3. 3.Departamento de Física y Química Teórica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations