Skip to main content
Log in

Revealing strong interactions with the reduced density gradient: a benchmark for covalent, ionic and charge-shift bonds

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The visualization of covalent interactions has been a common practice in theoretical chemistry thanks to the electron localization function (ELF). More recently, the reduced density gradient (RDG) has been introduced as a tool for revealing non-covalent interactions. Along reactions, interactions change from weak to strong and vice versa. Thus, a tool enabling to analyze all of them simultaneously is fundamental for reactivity studies. This contribution is aimed at filling this gap within the NCI approach. We will highlight the ability of RDG to reveal also strong interactions and produce a benchmark that covers covalent, ionic and charge-shift bonds. The ability of the NCI descriptor to differentiate among them will be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  2. del Campo JM, Gázquez JL, Alvarez-Mendez RJ, Vela A (2012) Int J Quantum Chem 112(22):3594

    Article  Google Scholar 

  3. Zupan A, Perdew JP, Burke K, Causa M (1997) Int J Quantum Chem 61(5):835

    Article  CAS  Google Scholar 

  4. Schmider H, Sagar RP, Smith VH Jr (1992) Can J Chem 70(2):506

    Article  CAS  Google Scholar 

  5. Kohout M, Savin A, Preuss H (1991) J Chem Phys 95(3):1928

    Article  CAS  Google Scholar 

  6. Finzel K, Grin Y, Kohout M (2012) Theor Chem Acc 131(2):1

    Article  CAS  Google Scholar 

  7. Kohout M, Pernal K, Wagner FR, Grin Y (2004) Theor Chem Acc: Theory, Comput, Model 112(5):453

    Article  CAS  Google Scholar 

  8. Kohout M, Pernal K, Wagner F, Grin Y (2005) Theor Chem Acc: Theory, Comput, Model 113(5):287

    Article  CAS  Google Scholar 

  9. Kohout M, Wagner F, Grin Y (2008) Theor Chem Acc: Theory, Comput, Model 119(5):413

    Article  CAS  Google Scholar 

  10. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) J Am Chem Soc 132(18):6498

    Article  CAS  Google Scholar 

  11. Bohórquez HJ, Boyd RJ (2010) Theor Chem Acc 127(4):393

    Article  Google Scholar 

  12. Bohórquez HJ, Matta CF, Boyd RJ (2010) Int J Quantum Chem 110(13):2418

    Google Scholar 

  13. De Silva P, Corminboeuf C (2014) J Chem Theory Comput 10(9):3745

    Article  Google Scholar 

  14. Boto RA, Contreras-García J, Tierny J, Piquemal JP (2015) Mol Phys 1–9

  15. Cedillo A, Robles J, Gázquez JL (1988) Phys Rev A 38(4):1697

    Article  CAS  Google Scholar 

  16. Tal Y, Bader R (1978) Int J Quantum Chem 14(S12):153

    Article  Google Scholar 

  17. Bader RF (1990) Atoms in molecules Wiley Online Library

  18. Pendás AM, Francisco E, Blanco MA, Gatti C (2007) Chem A Eur J 13(33):9362

    Article  Google Scholar 

  19. Hunter G (1986) Int J Quantum Chem 29(2):197

    Article  CAS  Google Scholar 

  20. Kohout M (2016) Mol Phys 114(7–8):1297

    Article  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09 Revision E.01. Gaussian Inc. Wallingford CT

  22. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S et al (1993) J Comput Chem 14(11):1347

    Article  CAS  Google Scholar 

  23. Ahrens J, Geveci B, Law C, Hansen C, Johnson C (2005) 36-paraview: an end-user tool for large-data visualization

  24. Humphrey W, Dalke A, Schulten K (1996) J Mol Gr 14(1):33

    Article  CAS  Google Scholar 

  25. Fischer A, Tiana D, Scherer W, Batke K, Eickerling G, Svendsen H, Bindzus N, Iversen BB (2011) J Phys Chem A 115(45):13061

    Article  CAS  Google Scholar 

  26. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397

    Article  CAS  Google Scholar 

  27. Reinhardt P, Hoggan PE (2009) Int J Quantum Chem 109(14):3191

    Article  CAS  Google Scholar 

  28. Contreras-García J, Calatayud M, Piquemal JP, Recio J (2012) Comput Theor Chem 998:193

    Article  Google Scholar 

  29. Llusar R, Beltrán A, Andrés J, Noury S, Silvi B (1999) J Comput Chem 20(14):1517

    Article  CAS  Google Scholar 

  30. Shaik S, Danovich D, Silvi B, Lauvergnat DL, Hiberty PC (2005) Chem A Eur J 11(21):6358

    Article  CAS  Google Scholar 

  31. Shaik S, Maitre P, Sini G, Hiberty PC (1992) J Am Chem Soc 114(20):7861

    Article  CAS  Google Scholar 

  32. Wu W, Gu J, Song J, Shaik S, Hiberty PC (2009) Angewandte Chemie 121(8):1435

    Article  Google Scholar 

  33. Gershoni-Poranne R, Chen P (2017) Chem A Eur J 23(19):4659

    Article  CAS  Google Scholar 

  34. Wagner K, Kohout M (2011) Theor Chem Acc 128(1):39

    Article  CAS  Google Scholar 

  35. Contreras-Garcia J, Yang W. Chemical concepts from density functional theory (Acta Physico-Chimica Sinica.), chap. The chemical information in Jacob’s ladder. (To be submitted)

  36. Gillet N, Chaudret R, Contreras-Garc\(\acute{\iota }\)a J, Yang W, Silvi B, Piquemal JP (2012) J Chem Theory Comput 8(11):3993

  37. Fang D, Chaudret R, Piquemal JP, Cisneros GA (2013) J Chem Theory Comput 9(5):2156

    Article  CAS  Google Scholar 

  38. Andrés J, Berski S, Contreras-García J, González-Navarrete P (2014) J Phys Chem A 118(9):1663

    Article  Google Scholar 

  39. Armstrong A, Boto RA, Dingwall P, Contreras-Garcia J, Harvey MJ, Mason NJ, Rzepa HS (2014) Chem Sci 5(5):2057

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the reviewers of our paper for their careful reading and helping to improve this manuscript. This work was supported partially by the framework of CALSIMLAB under the public grant ANR-11-LABX-0037-01 overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (reference: ANR-11-IDEX-0004-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto A. Boto.

Additional information

Published as part of the special collection of articles "First European Symposium on Chemical Bonding".

Appendix: Critical points of s

Appendix: Critical points of s

We now develop the gradient of s to shed some chemical insight into the critical points of s. CPs of s are given by the following equation:

$$\begin{aligned} \nabla s =\frac{1}{C_{s}}\sum _{i,j} \left [\frac{H_{ij}}{ \rho ^{4/3} |\nabla \rho |} - \frac{4}{3} \frac{|\nabla \rho |}{\rho ^{7/3}}\right ]\left(\frac{\partial \rho }{\partial x_{j}}\right ){\mathbf {u_{j}}} = 0, \end{aligned}$$
(9)

where \(x_i\) stands for \(\{x,y,z\}\), \({\mathbf {u_{i}}}\) for three unit vectors along directions xy and z, and \(H_{ij}\) for the electron density Hessian matrix elements \(\frac{\partial ^2\rho }{\partial x_{i}x_{j}}\). Since at CPs of s \(\nabla s\) must be zero along each direction xy and z, the following three equalities must be satisfied:

$$\begin{aligned} \frac{1}{\rho ^{4/3}|\nabla \rho |} \Big [H_{11} + H_{12} + H_{13} \Big ] \Big (\frac{\partial \rho }{\partial x}\Big )= & {} \frac{4}{3} \frac{|\nabla \rho |}{\rho ^{7/3}} \Big (\frac{\partial \rho }{\partial x}\Big ), \end{aligned}$$
(10)
$$\begin{aligned} \frac{1}{ \rho ^{4/3}|\nabla \rho |} \Big [H_{12} + H_{22} + H_{23} \Big ] \Big (\frac{\partial \rho }{\partial y}\Big )= & {} \frac{4}{3} \frac{|\nabla \rho |}{\rho ^{7/3}} \Big (\frac{\partial \rho }{\partial y}\Big ), \end{aligned}$$
(11)
$$\begin{aligned} \frac{1}{ \rho ^{4/3}|\nabla \rho |} \Big [H_{13} + H_{32} + H_{33} \Big ] \Big (\frac{\partial \rho }{\partial z}\Big )= & {} \frac{4}{3} \frac{|\nabla \rho |}{\rho ^{7/3}} \Big (\frac{\partial \rho }{\partial z}\Big ). \end{aligned}$$
(12)

To connect CPs of s with those of the electron density and with the Laplacian of the electron density, we shall consider different cases:

Case 1. :

AIM-CPs: \(\frac{\partial \rho }{\partial x_{i}}=0\) for all i. \(|\nabla \rho |\) and \(\frac{\partial \rho }{\partial x_{i}}\) are equal to zero along each direction. Thus, there is a division 0/0 for each left-hand side of Eqs. 10, 11, and 12. Since \(\frac{\partial \rho }{\partial x_{i}}\) approaches to zero faster than \(|\nabla \rho |\) , this limit is zero along each direction. Therefore, at critical points of \(\rho\), \(\nabla s\) tends to zero.

Case 2. :

Non-AIM-CPs: \(|\nabla \rho | \ne 0\),

$$\begin{aligned} \Big [H_{11} + H_{12} + H_{13} \Big ] \Big (\frac{\partial \rho }{\partial x}\Big )= & {} \frac{4}{3} \frac{|\nabla \rho |^2}{\rho } \Big (\frac{\partial \rho }{\partial x}\Big ), \end{aligned}$$
(13)
$$\begin{aligned} \Big [H_{21} + H_{22} + H_{23} \Big ] \Big (\frac{\partial \rho }{\partial y}\Big )= & {} \frac{4}{3} \frac{|\nabla \rho |^2}{\rho } \Big (\frac{\partial \rho }{\partial y}\Big ), \end{aligned}$$
(14)
$$\begin{aligned} \Big [H_{31} + H_{32} + H_{33} \Big ] \Big (\frac{\partial \rho }{\partial z}\Big )= & {} \frac{4}{3} \frac{|\nabla \rho |^2}{\rho } \Big (\frac{\partial \rho }{\partial z}\Big ). \end{aligned}$$
(15)
Case 2.1. :

\(\frac{\partial \rho }{\partial x_{i}} \ne 0\) for all i

$$\begin{aligned} H_{11} + H_{12} + H_{13}= & {} \frac{4}{3} \frac{|\nabla \rho |^2}{\rho }, \end{aligned}$$
(16)
$$\begin{aligned} H_{21} + H_{22} + H_{23}= & {} \frac{4}{3} \frac{|\nabla \rho |^2}{\rho }, \end{aligned}$$
(17)
$$\begin{aligned} H_{31} + H_{32} + H_{33}= & {} \frac{4}{3} \frac{|\nabla \rho |^2}{\rho } . \end{aligned}$$
(18)

.

Case 2.2. :

Mutual cancelation of all off-diagonal terms: \(H_{12} + H_{13}= H_{21} + H_{23} = H_{31} + H_{32} = 0\)

$$\begin{aligned} H_{11} = H_{22} = H_{33} = \frac{4}{3} \frac{|\nabla \rho |^2}{\rho }. \end{aligned}$$
(19)

It is worth noting that the trace of H, \(H_{11} + H_{22} + H_{33}\), which is equal to the Laplacian of the electron density, \(\nabla ^{2} \rho\), takes positive values and equal to \(4 \frac{|\nabla \rho |^2}{\rho }\).

Case 2.3. :

H is diagonal. Then, all off-diagonal terms are zero and Equality 19 is obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boto, R.A., Piquemal, JP. & Contreras-García, J. Revealing strong interactions with the reduced density gradient: a benchmark for covalent, ionic and charge-shift bonds. Theor Chem Acc 136, 139 (2017). https://doi.org/10.1007/s00214-017-2169-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2169-9

Keywords

Navigation