Theoretical Chemistry Accounts

, 136:132 | Cite as

Direct dynamics calculations of multiple proton transfer through hydrogen-bonded wire and the role of micro-solvation in ClONO2 + H2O → HNO3 + HOCl reactions

Regular Article

Abstract

The hydrolysis of ClONO2 on polar stratospheric ice has been considered as a major factor causing stratospheric ozone depletion. We have theoretically investigated the reaction dynamics of hydrolysis on ice surface and the role of micro-solvation. No theoretical studies have been performed for the micro-solvent effect of multiple proton transfer in the hydrolysis of ClONO2. Rate constants and tunneling coefficients were calculated using variational transition state theory including multidimensional tunneling. The dispersion corrected, spin-component scaled, double hybrid PBE functional with the P86 correlation that can reproduce the MP2/CBS + ∆CCSD(Q) result was used to generate potential energy surfaces. No more than three water molecules could form a cyclic hydrogen (H)-bonded chain to catalyze the reaction and the other is bound to the chain to act as a micro-solvent. The catalytic water reduced not only the barrier but also the tunneling effect significantly. The micro-solvent effect of lowering the barrier is smaller and depends on the position. The multiple proton transfer path through H-bonded chain, in some cases, varied with the position of micro-solvent, and consequently the H-bonded structure of HOCl–HNO3 cluster became completely different from the reactant and TS structures. The predicted rate constant was 0.671 at 193 K, and the Arrhenius activation energy was 8 kcal/mol. This rate constant was smaller by three orders of magnitude than that of ClONO2 + HCl on ice, which is consistent with the experimental observations that at low HCl concentration conditions ClONO2 hydrolysis competes with ClONO2 + HCl reaction.

Keywords

Multiple proton transfer Micro-solvation ClONO2 hydrolysis on ice Hydrogen-bonded water wire Variational transition state theory 

Notes

Acknowledgements

This research was supported by a research grant from Kyung Hee University in 2013 (KHU-20130574).

Supplementary material

214_2017_2163_MOESM1_ESM.docx (291 kb)
Supplementary material 1 (DOCX 290 kb)

References

  1. 1.
    Abbatt JPD (2003) Chem Rev 103:4783CrossRefGoogle Scholar
  2. 2.
    Cicerone RJ (1987) Science 237:35CrossRefGoogle Scholar
  3. 3.
    Crutzen PJ, Arnold F (1986) Nature 324:651CrossRefGoogle Scholar
  4. 4.
    Farman JC, Gardiner BG, Shanklin JD (1985) Nature 315:207CrossRefGoogle Scholar
  5. 5.
    Leu MT (1988) Geophys Res Lett 15:17CrossRefGoogle Scholar
  6. 6.
    McElroy MB, Salawitch RJ, Wofsy SC (1986) Geophys Res Lett 13:1296CrossRefGoogle Scholar
  7. 7.
    Molina MJ, Molina LT, Kolb CE (1996) Annu Rev Phys Chem 47:327CrossRefGoogle Scholar
  8. 8.
    Molina MJ, Tso T, Molina LT, Wang FC (1987) Science 238:1253CrossRefGoogle Scholar
  9. 9.
    Solomon S (1988) Rev Geophys 26:131CrossRefGoogle Scholar
  10. 10.
    Solomon S, Garcia RR, Rowland FS, Wuebbles DJ (1986) Nature 321:755CrossRefGoogle Scholar
  11. 11.
    Tolbert MA, Rossi MJ, Malhotra R, Golden DM (1987) Science 238:1258CrossRefGoogle Scholar
  12. 12.
    Toon OB, Kamill P, Turco RP, Pinto J (1986) Geophys Res Lett 13:1284CrossRefGoogle Scholar
  13. 13.
    Wennberg PO (1994) Science 266:398CrossRefGoogle Scholar
  14. 14.
    Bianco R, Hynes JT (1998) J Phys Chem A 102:309CrossRefGoogle Scholar
  15. 15.
    Bianco R, Hynes JT (2003) J Phys Chem A 107:5253CrossRefGoogle Scholar
  16. 16.
    Bianco R, Hynes JT (1999) J Phys Chem A 103:3797–3801CrossRefGoogle Scholar
  17. 17.
    Chu LT, Leu MT, Keyser LF (1993) J Phys Chem 97:12798–12804CrossRefGoogle Scholar
  18. 18.
    Fernandez MA, Hynes RG, Cox RA (2005) J Phys Chem A 109:9986–9996CrossRefGoogle Scholar
  19. 19.
    Hanson DR (1995) J Phys Chem 99:13059CrossRefGoogle Scholar
  20. 20.
    Hanson DR, Ravishankara AR (1992) J Phys Chem 96:2682–2691CrossRefGoogle Scholar
  21. 21.
    Harnett J, Haq S, Hodgson A (2002) J Phys Chem A 106:9226–9232CrossRefGoogle Scholar
  22. 22.
    Horn AB, Sodeau JR, Roddis TB, Williams NA (1998) J Phys Chem A 102:6107–6120CrossRefGoogle Scholar
  23. 23.
    Horn AB, Sodeau JR, Roddis TB, Williams NA (1998) J Chem Soc Faraday Trans 94:1721CrossRefGoogle Scholar
  24. 24.
    McNamara JP, Tresadern G, Hillier IH (2000) J Phys Chem A 104:4030–4044CrossRefGoogle Scholar
  25. 25.
    Oppliger R, Allanic A, Rossi MJ (1997) J Phys Chem A 101:1903–1911CrossRefGoogle Scholar
  26. 26.
    Sodeau JR, Horn AB, Banham SF, Koch TG (1995) J Phys Chem 99:6258CrossRefGoogle Scholar
  27. 27.
    Van Doren JM, Viggiano AA, Morris RA (1994) J Am Chem Soc 116:6957–6958CrossRefGoogle Scholar
  28. 28.
    Xu SC, Zhao XS (1999) J Phys Chem A 103:2100CrossRefGoogle Scholar
  29. 29.
    Shi Q, Jayne JT, Kolb CE, Worsnop DR, Davidovits P (2001) J Geophys Res 106:24259CrossRefGoogle Scholar
  30. 30.
    Xu SC, Guo R, Wang SL (1999) Chem Phys Lett 313:617–625CrossRefGoogle Scholar
  31. 31.
    Nam K, Kim Y (2009) J Chem Phys 130:144310CrossRefGoogle Scholar
  32. 32.
    Bell RL, Truong TN (1997) J Phys Chem A 101:7802–7808CrossRefGoogle Scholar
  33. 33.
    Bigeleisen J (1955) J Chem Phys 23:2264CrossRefGoogle Scholar
  34. 34.
    Rumpel H, Limbach H-H (1989) J Am Chem Soc 111:5429CrossRefGoogle Scholar
  35. 35.
    Venkatasubban KS, Schowen RL (1984) CRC Crit Rev Biochem 17:1CrossRefGoogle Scholar
  36. 36.
    Voegele AF, Tautermann CS, Loerting T, Liedl KR (2002) J Phys Chem A 106:7850CrossRefGoogle Scholar
  37. 37.
    Loerting T, Liedl KR (2001) Chem Eur J 7:1662–1669CrossRefGoogle Scholar
  38. 38.
    Loerting T, Voegele AF, Tautermann CS, Liedl KR, Molina LT, Molina MJ (2006) J Geophys Res 111:D14307CrossRefGoogle Scholar
  39. 39.
    McNamara JP, Hillier IH (1999) J Phys Chem A 103:7310–7321CrossRefGoogle Scholar
  40. 40.
    McNamara JP, Tresadern G, Hillier IH (1999) Chem Phys Lett 310:265–270CrossRefGoogle Scholar
  41. 41.
    Bender ML (1971) Mechanisms of homogeneous catalysis from protons to proteins. Wiley, New YorkGoogle Scholar
  42. 42.
    Melander L, Saunders WHJ (1980) Reaction rates of isotopic molecules. Wiley, New YorkGoogle Scholar
  43. 43.
    Girardet C, Tiubin C (2001) Surf Sci Rep 44:159 and references there inGoogle Scholar
  44. 44.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Revision C.01. Gaussian Inc, WallingfordGoogle Scholar
  45. 45.
    Quack M, Stohner J, Suhm MA (2001) J Mol Struct 599:381–425CrossRefGoogle Scholar
  46. 46.
    Sekušak S, Liedl KR, Sabljić A (1998) J Phys Chem A 102:1583–1594CrossRefGoogle Scholar
  47. 47.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  48. 48.
    Martin JML, Oliveira GD (1999) J Chem Phys 111:1843–1856CrossRefGoogle Scholar
  49. 49.
    Xantheas SS, Burnham CJ, Harrison RJ (2002) J Chem Phys 116:1493–1499CrossRefGoogle Scholar
  50. 50.
    Garrett BC, Joseph T, Truong TN, Truhlar DG (1989) Chem Phys 136:271–293CrossRefGoogle Scholar
  51. 51.
    Garrett BC, Truhlar DG, Grev RS, Magnuson AW (1980) J Phys Chem 84:1730–1748CrossRefGoogle Scholar
  52. 52.
    Liu YP, Lynch GC, Truong TN, Lu DH, Truhlar DG, Garrett BC (1993) J Am Chem Soc 115:2408–2415CrossRefGoogle Scholar
  53. 53.
    Truhlar DG, Isaacson AD, Garrett BC (1985) Generalized transition state theory. In: Baer M (ed) Theory of chemical reaction dynamics, vol 4. CRC Press, Boca Raton, pp 65–137Google Scholar
  54. 54.
    Fernandez-Ramos A, Ellingson BA, Garrett BC, Truhlar DG (2007) Variational transition state theory with multidimensional tunneling. In: Lipkowitz KB, Cundari TR (eds) Reviews in computational chemistry, vol 23. Wiley, Hoboken, pp 125–232CrossRefGoogle Scholar
  55. 55.
    Zheng J, Zhang S, Corchado JC, Chuang Y-Y, Coitiño EL, Ellingson BA, Truhlar DG (2010) Gaussrate 2009-A. University of Minnesota, MinneapolisGoogle Scholar
  56. 56.
    Zheng J, Zhang S, Lynch BJ, Corchado JC, Chuang Y-Y, Fast PL, Hu W-P, Liu Y-P, Lynch GC, Nguyen KA, Jackels CF, Ramos AF, Ellingson BA, Melissas VS, Villà J, Rossi I, Coitiño EL, Pu J, Albu TV, Steckler R, Garrett BC, Isaacson AD, Truhlar DG (2010) Polyrate 2010-A. University of Minnesota, MinneapolisGoogle Scholar
  57. 57.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093CrossRefGoogle Scholar
  58. 58.
    Lee TJ, Taylor PR (1989) Int J Quantum Chem 36:199–207CrossRefGoogle Scholar
  59. 59.
    Kozuch S, Martin JM (2011) Phys Chem Chem Phys 13:20104–20107CrossRefGoogle Scholar
  60. 60.
    McNamara JP, Hillier IH (2001) J Phys Chem A 105:7011–7024CrossRefGoogle Scholar
  61. 61.
    Kim Y, Truhlar DG, Kreevoy MM (1991) J Am Chem Soc 113:7837CrossRefGoogle Scholar
  62. 62.
    Liedl KR, Sekusak S, Kroemer RT, Rode BM (1997) J Phy Chem A 101:4707CrossRefGoogle Scholar
  63. 63.
    Mai BK, Park K, Duong MP, Kim Y (2013) J Phys Chem B 117:307–315CrossRefGoogle Scholar
  64. 64.
    Robinson GN, Worsnop DR, Jayne JT, Kolb CE, Davidovits P (1997) J Geophys Res Atmos 102:3583–3601CrossRefGoogle Scholar
  65. 65.
    Shi Q, Jayne JT, Kolb CE, Worsnop DR, Davidovits P (2001) J Geophys Res Atmos 106:24259–24274CrossRefGoogle Scholar
  66. 66.
    Tabazadeh A, Turco RP (1993) J Geophys Res 98:12727–12740CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Applied ChemistryKyung Hee UniversityYongin-siKorea

Personalised recommendations