Theoretical Chemistry Accounts

, 136:131 | Cite as

A theoretical investigation on the mechanism and kinetics of the gas-phase reaction of naphthalene with OH radical

Regular Article


The oxidation of naphthalene initiated by OH radical is studied by using density functional theory methods, M06-2X, ωB97XD and MPWB1K with 6-311G(d,p) basis set. The relative energy of the reactive species is also calculated at CCSD(T)/6-311G(d,p), CCSD(T)/cc-pVDZ, M06-2X/aug-cc-pVTZ and ωB97XD/aug-cc-pVTZ level of theories with the geometry optimized at M06-2X/6-311G(d,p) level of theory. The reactions were found to proceed via electrophilic addition of OH radical to the aromatic ring of naphthalene and H-atom abstraction from the aromatic ring of naphthalene by OH radical. The OH addition and H-atom abstraction reactions are occurring favorably at C1 position of naphthalene. The H-atom abstraction is dominant than OH addition reaction at high temperature (400–873 K). The reactions subsequent to the initial OH radical addition and H-atom abstraction reactions are studied in detail. The reaction of the initially formed intermediates with O2 results in the formation of peroxy radical and 1-naphthol. The isomerization of peroxy radical and reaction of peroxy radical with HO2, NO and NO2 leads to the formation of epoxynaphthalene, hydroperoxide adducts and nitro naphthalene. We have calculated the rate constant for favorable initial and secondary reactions. This study provides thermochemical and kinetic data for the atmospheric oxidation of naphthalene by OH radical and demonstrates the secondary reactions of naphthalene derivatives.


Naphthalene OH radical Reaction mechanism Electrophilic OH addition reaction H-atom abstraction reaction Rate constant 



The authors are thankful to UGC and Department of Science and Technology (DST), India, for funding to establish high-performance computing facility under the SAP and PURSE programs.

Supplementary material

214_2017_2162_MOESM1_ESM.docx (1013 kb)
Supplementary material 1 (DOCX 1012 kb)


  1. 1.
    Finlayson-Pitts BJ, Pitts JN Jr (1045) Science 1997:276Google Scholar
  2. 2.
    Bjorseth A, Dennis AJ (1980) (eds) Polynuclear Aromatic Hydrocarbons: Chemistry and Biological Effects. Battelle Press, Columbus, USA, pp 107–125Google Scholar
  3. 3.
    Nielsen T, Jorgensen HE, Larsen JC, Poulsen M (1996) Sci Total Environ 190:41CrossRefGoogle Scholar
  4. 4.
    Hannigan MP, Cass GR, Lafleur AL, Busby WF Jr, Thilly WG (1996) Environ Health Perspect 104:428CrossRefGoogle Scholar
  5. 5.
    Zielinska B, Sagebiel JC, Harshfield G, Gertler AW, Pierson WR (1996) Atmos Environ 30:2269CrossRefGoogle Scholar
  6. 6.
    Mastral AM, Callen MS (2000) Environ Sci Technol 34:3051CrossRefGoogle Scholar
  7. 7.
    Shiroudi A, Deleuze MS (2014) J Phys Chem A 118:3625CrossRefGoogle Scholar
  8. 8.
    Shiroudi A, Deleuze MS, Canneaux S (2014) J Phys Chem A 118:4593CrossRefGoogle Scholar
  9. 9.
    Robinson AL, Donahue NM, Shrivastava MK, Weitkamp EA, Sage AM, Grieshop AP, Lane TE, Pierce JR, Pandis SN (2007) Science 315:1259CrossRefGoogle Scholar
  10. 10.
    Shakya KM, Griffin R (2010) J Environ Sci Technol 44:8134CrossRefGoogle Scholar
  11. 11.
    Nishino N, Arey J, Atkinson R (2012) Environ Sci Technol 46:8198CrossRefGoogle Scholar
  12. 12.
    Nishino N, Arey J, Atkinson R (2009) Environ Sci Technol 43:8554CrossRefGoogle Scholar
  13. 13.
    Bunce NJ, Liu L, Zhu J, Lane DA (1997) Environ Sci Technol 31:2252CrossRefGoogle Scholar
  14. 14.
    Lee JY, Lane DA (2009) Atmos Environ 43:4886CrossRefGoogle Scholar
  15. 15.
    Sasaki J, Aschmann SM, Kwok ESC, Atkinson R, Arey J (1997) Environ Sci Technol 31:3173CrossRefGoogle Scholar
  16. 16.
    Lorenz K, Zellner R (1983) Ber Bunsen Grd Phys Chem 87:629CrossRefGoogle Scholar
  17. 17.
    Lorenz K, Zellner R (1984) In: 8th international symposium on gas kinetics, p 15Google Scholar
  18. 18.
    Qu X, Zhang Q, Wang W (2006) Chem Phys Lett 429:77CrossRefGoogle Scholar
  19. 19.
    Zhang Z, Lin L, Wang L (2012) Phys Chem Chem Phys 14:2645CrossRefGoogle Scholar
  20. 20.
    Zhang Z, Xu X, Wang L (2013) J Phys Chem A 117:160CrossRefGoogle Scholar
  21. 21.
    Atkinson R, Arey J (2003) Chem Rev 103:4605CrossRefGoogle Scholar
  22. 22.
    Sun X, Zhang C, Zhao Y, Bai J, Zhang Q, Wang W (2012) Environ Sci Technol 46:8148CrossRefGoogle Scholar
  23. 23.
    Fleming JL, Monks PS, Rickard AR, Heard DE, Bloss WJ, Seakins PW, Still TJ, Sommariva R, Pilling MJ, Morgan R, Green TJ, Brough N, Mills GP, Penkett SA, Lewis AC, Lee JD, Saiz-Lopez A, Plane JMC (2006) Atmos Chem Phys 6:2193CrossRefGoogle Scholar
  24. 24.
    Sandhiya L, Senthilkumar K (2014) RSC Adv 4:7749CrossRefGoogle Scholar
  25. 25.
    Sandhiya L, Kolandaivel P, Senthilkumar K (2013) Theor Chem Acc 132:1382CrossRefGoogle Scholar
  26. 26.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215CrossRefGoogle Scholar
  27. 27.
    Croft AK, Howard-Jones HM, Skates CEA, Wood CC (2011) Org Biomol Chem 9:7439CrossRefGoogle Scholar
  28. 28.
    Hashemi SR, Saheb VA, Mohammad Ali SH (2016) J Fluor Chem 187:9CrossRefGoogle Scholar
  29. 29.
    Ren H, Xi Y, Xi LYL, Xi W (2014) Chem Phys Lett 28:605–606Google Scholar
  30. 30.
    Sandhiya L, Ponnusamy SA, Senthilkumar K (2016) RSC Adv 6:81354CrossRefGoogle Scholar
  31. 31.
    Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154CrossRefGoogle Scholar
  32. 32.
    Gonzalez C, Schlegel HB (1990) J Chem Phys 94:5523CrossRefGoogle Scholar
  33. 33.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.01. Wallingford, CTGoogle Scholar
  34. 34.
    Garrett BC, Truhlar DG (1979) J Am Chem Soc 101:4534CrossRefGoogle Scholar
  35. 35.
    Garrett BC, Truhlar DG, Grev RS, Magnuson AW (1980) J Phys Chem 84:1730CrossRefGoogle Scholar
  36. 36.
    Zheng J, Zhang S, Corchado JC, Chuang YY, Coitino EL, Ellingson BA, Truhlar DG (2009) GAUSSRATE versionGoogle Scholar
  37. 37.
    Zheng J, Zhang S, Lynch BJ, Corchado JC, Chaung YY, Fast PL, Hu WP, Liu YP, Lynch GC, Nguyen KA, Jackels CF, Ramos AF, Ellingson BA, Melissas VS, Villa J, Rossi I, Coitino EL, Pu J, Albu TV (2010) POLYRATE versionGoogle Scholar
  38. 38.
    Qu X, Zhang Q, Wang W (2006) Chem Phys Lett 432:40CrossRefGoogle Scholar
  39. 39.
    Ponnusamy S, Sandhiya LA, Senthilkumar K (2017) Int J Chem Kinet 49:339CrossRefGoogle Scholar
  40. 40.
    Shiroudi A, Deleuze MS, Canneaux S (2015) Phys Chem Chem Phys 17:13719CrossRefGoogle Scholar
  41. 41.
    Lee J, Lane DA (2010) Atmos Environ 44:2469CrossRefGoogle Scholar
  42. 42.
    Sapakis MT, Stephanou EG (2003) Atmos Environ 37:4935CrossRefGoogle Scholar
  43. 43.
    Koch R, Knispel R, Siese MA XZetzsch C (1994) European commission, Brussels/LuxemburyGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • M. Gnanaprakasam
    • 1
  • L. Sandhiya
    • 1
  • K. Senthilkumar
    • 1
  1. 1.Department of PhysicsBharathiar UniversityCoimbatoreIndia

Personalised recommendations